The involvement of the mu-opioid receptor in ketamine-induced respiratory depression and antinociception

Author(s): Sarton E, Teppema LJ, Olievier C, Nieuwenhuijs D, Matthes HW, et al.

Abstract

N-methyl-D-aspartate receptor antagonism probably accounts for most of ketamine's anesthetic effects; its analgesic properties are mediated partly via N-methyl-D-aspartate and partly via opioid receptors. We assessed the involvement of the mu-opioid receptor in S(+) ketamine-induced respiratory depression and antinociception by performing dose-response curves in exon 2 mu-opioid receptor knockout mice (MOR(-/-)) and their wild-type littermates (WT). The ventilatory response to increases in inspired CO(2) was measured with whole body plethysmography. Two antinociceptive assays were used: the tail-immersion test and the hotplate test. S(+) ketamine (0, 10, 100, and 200 mg/kg intraperitoneally) caused a dose-dependent respiratory depression in both genotypes, with greater depression observed in WT relative to MOR(-/-) mice. At 200 mg/kg, S(+) ketamine reduced the slope of the hypercapnic ventilatory response by 93% +/- 15% and 49% +/- 6% in WT and MOR(-/-) mice, respectively (P < 0.001). In both genotypes, S(+) ketamine produced a dose-dependent increase in latencies in the hotplate test, with latencies in MOR(-/-) mice smaller compared with those in WT animals (P < 0.05). In contrast to WT mice, MOR(-/-) mice displayed no ketamine-induced antinociception in the tail-immersion test. These results indicate that at supraspinal sites S(+) ketamine interacts with the mu-opioid system. This interaction contributes significantly to S(+) ketamine-induced respiratory depression and supraspinal antinociception.

Implications: The involvement of the mu-opioid receptor system in S(+) ketamine-induced respiratory depression and spinal and supraspinal analgesia was demonstrated by performing experiments in mice lacking the mu-opioid receptor and in mice with intact mu-opioid receptors.

Similar Articles

Induction of vertebrate regeneration by a transient sodium current

Author(s): Tseng AS, Beane WS, Lemire JM, Masi A, Levin M

Plasticity in the intrinsic excitability of cortical pyramidal neurons

Author(s): Desai NS, Rutherford LC, Turrigiano GG

AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke

Author(s): Clarkson AN, Overman JJ, Zhong S, Mueller R, Lynch G, et al.

The role of injury discharge in the induction of neuropathic pain behavior in rats

Author(s): Seltzer Z, Beilin BZ, Ginzburg R, Paran Y, Shimko T

ATP release from dorsal spinal cord synaptosomes: characterization and neuronal origin

Author(s): Sawynok J, Downie JW, Reid AR, Cahill CM, White TD

Spinal cord injury immediately decreases anesthetic requirements in rats

Author(s): Foffani G, Humanes-Valera D, Calderon-Muñoz F, Oliviero A, Aguilar J

The effect of glutamate receptor blockers on glutamate release following spinal cord injury

Author(s): McAdoo DJ, Hughes MG, Nie L, Shah B, Clifton C, et al.

Pulmonary vasodilation by ketamine is mediated in part by L-type calcium channels

Author(s): Kaye AD, Banister RE, Anwar M, Feng CJ, Kadowitz PJ, et al.

Neuroprotective effects of riluzole and ketamine during transient spinal cord ischemia in the rabbit

Author(s): Lips J, de Haan P, Bodewits P, Vanicky I, Dzoljic M, et al.

Role of kappa-opioid receptors in the effects of salvinorin A and ketamine on attention in rats

Author(s): Nemeth CL, Paine TA, Rittiner JE, Béguin C, Carroll FI, et al.

Calcium-dependent glutamate release concomitant with massive potassium flux during cerebral ischemia in vivo

Author(s): Katayama Y, Kawamata T, Tamura T, Hovda DA, Becker DP, et al.

Regional distribution and postnatal changes of D-amino acids in rat brain

Author(s): Hamase K, Homma H, Takigawa Y, Fukushima T, Santa T, et al.

Characterization of electrically evoked [3H]-D-aspartate release from hippocampal slices

Author(s): Savage DD, Galindo R, Queen SA, Paxton LL, Allan AM

Spinal cord injury causes a wide-spread, persistent loss of Kir4

Author(s): Olsen ML, Campbell SC, McFerrin MB, Floyd CL, Sontheimer H

Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake

Author(s): Levenson J, Weeber E, Selcher JC, Kategaya LS, Sweatt JD, et al.

Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation

Author(s): Correia SS, Bassani S, Brown TC, Lisé MF, Backos DS, et al.

Differential trafficking of AMPA and NMDA receptors during long-term potentiation in awake adult animals

Author(s): Williams JM, Guévremont D, Mason-Parker SE, Luxmanan C, Tate WP, et al.

Effect of intravenous lidocaine on experimental spinal cord injury

Author(s): Kobrine AI, Evans DE, LeGrys DC, Yaffe LJ, Bradley ME

Effect of lidocaine treatment on acute spinal cord injury

Author(s): Haghighi SS, Chehrazi BB, Higgins RS, Remington WJ, Wagner FC

Protection against experimental ischemic spinal cord injury

Author(s): Robertson CS, Foltz R, Grossman RG, Goodman JC