Role of group I metabotropic glutamate receptors in traumatic spinal cord white matter injury

Author(s): Agrawal SK, Theriault E, Fehlings MG

Abstract

Metabotropic glutamate receptors (mGluRs) participate in glutamate neural transmission, but their role in the pathophysiology of spinal cord injury (SCI) has not been explored. Accordingly, we examined the role of group I mGluRs, which are linked to phospholipase C, in mediating SCI using an in vitro model. A dorsal column segment was isolated from the spinal cord of adult rats, maintained in vitro, and injured by compression for 15 sec with a clip having a 2 g closing force. Under control conditions after SCI, the compound action potential (CAP) amplitude was reduced to 69.1 +/- 5.4% of baseline. Blockade of group I mGluR receptors with MCPG, 4CPG, or AIDA resulted in improved recovery of CAP amplitude (82.2 +/- 2.0%, 86.2 +/- 3.9%, and 86.0 +/- 2.5% of baseline, respectively). The group I/II agonist trans-ACPD and selective group I agonist DHPG exacerbated the posttraumatic reduction of CAP amplitude. The phospholipase C inhibitor U-73122 improved recovery of CAP amplitude after traumatic spinal cord axonal injury. Western blotting and immunocytochemistry demonstrated the presence of mGluR1alpha-immunopositive astrocytes and the absence of mGluR5 in spinal cord white matter. These studies are consistent with the hypothesis that activation of group I mGluR receptors after SCI exacerbates posttraumatic axonal injury through a phospholipase C dependent mechanism. The presence of mGluR1alpha labeling on astrocytes suggests a role for these cells in the pathophysiology of SCI. Additional studies in vivo, are required to further clarify the role of mGluRs in acute traumatic SCI.

Similar Articles

Induction of vertebrate regeneration by a transient sodium current

Author(s): Tseng AS, Beane WS, Lemire JM, Masi A, Levin M

Plasticity in the intrinsic excitability of cortical pyramidal neurons

Author(s): Desai NS, Rutherford LC, Turrigiano GG

AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke

Author(s): Clarkson AN, Overman JJ, Zhong S, Mueller R, Lynch G, et al.

The role of injury discharge in the induction of neuropathic pain behavior in rats

Author(s): Seltzer Z, Beilin BZ, Ginzburg R, Paran Y, Shimko T

ATP release from dorsal spinal cord synaptosomes: characterization and neuronal origin

Author(s): Sawynok J, Downie JW, Reid AR, Cahill CM, White TD

Spinal cord injury immediately decreases anesthetic requirements in rats

Author(s): Foffani G, Humanes-Valera D, Calderon-Muñoz F, Oliviero A, Aguilar J

The effect of glutamate receptor blockers on glutamate release following spinal cord injury

Author(s): McAdoo DJ, Hughes MG, Nie L, Shah B, Clifton C, et al.

Pulmonary vasodilation by ketamine is mediated in part by L-type calcium channels

Author(s): Kaye AD, Banister RE, Anwar M, Feng CJ, Kadowitz PJ, et al.

Neuroprotective effects of riluzole and ketamine during transient spinal cord ischemia in the rabbit

Author(s): Lips J, de Haan P, Bodewits P, Vanicky I, Dzoljic M, et al.

The involvement of the mu-opioid receptor in ketamine-induced respiratory depression and antinociception

Author(s): Sarton E, Teppema LJ, Olievier C, Nieuwenhuijs D, Matthes HW, et al.

Role of kappa-opioid receptors in the effects of salvinorin A and ketamine on attention in rats

Author(s): Nemeth CL, Paine TA, Rittiner JE, Béguin C, Carroll FI, et al.

Calcium-dependent glutamate release concomitant with massive potassium flux during cerebral ischemia in vivo

Author(s): Katayama Y, Kawamata T, Tamura T, Hovda DA, Becker DP, et al.

Regional distribution and postnatal changes of D-amino acids in rat brain

Author(s): Hamase K, Homma H, Takigawa Y, Fukushima T, Santa T, et al.

Characterization of electrically evoked [3H]-D-aspartate release from hippocampal slices

Author(s): Savage DD, Galindo R, Queen SA, Paxton LL, Allan AM

Spinal cord injury causes a wide-spread, persistent loss of Kir4

Author(s): Olsen ML, Campbell SC, McFerrin MB, Floyd CL, Sontheimer H

Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake

Author(s): Levenson J, Weeber E, Selcher JC, Kategaya LS, Sweatt JD, et al.

Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation

Author(s): Correia SS, Bassani S, Brown TC, Lisé MF, Backos DS, et al.

Differential trafficking of AMPA and NMDA receptors during long-term potentiation in awake adult animals

Author(s): Williams JM, Guévremont D, Mason-Parker SE, Luxmanan C, Tate WP, et al.

Effect of intravenous lidocaine on experimental spinal cord injury

Author(s): Kobrine AI, Evans DE, LeGrys DC, Yaffe LJ, Bradley ME

Effect of lidocaine treatment on acute spinal cord injury

Author(s): Haghighi SS, Chehrazi BB, Higgins RS, Remington WJ, Wagner FC

Protection against experimental ischemic spinal cord injury

Author(s): Robertson CS, Foltz R, Grossman RG, Goodman JC