Increase in K+-stimulated, Ca2+-dependent release of [3H]glutamate from rat dentate gyrus three days after induction of long-term potentiation

Author(s): Bliss TV, Errington ML, Laroche S, Lynch MA

Abstract

Long-term potentiation (LTP) was induced by unilateral tetanic stimulation of the perforant path in the dentate gyrus of rats with implanted electrodes. Evoked potentials were monitored for the subsequent 3 days in one group, and for 23 days in another. The dentate gyrus was removed bilaterally and slices prepared and stored in 10% DMSO/Krebs for subsequent analysis of K+-stimulated, Ca2+-dependent release of [3H]glutamate. In the 3-day group, in which the mean increase in the population EPSP was 35% at the time of sacrifice, release from the tetanized side was significantly greater than from the unstimulated side. In the 23-day group, both the increase in the EPSP and the increase in release from the tetanized side had declined to statistically insignificant levels. These results extend to a period of several days the previously observed association between LTP and increased K+-stimulated, Ca2+-dependent release of transmitter.

Similar Articles

Induction of vertebrate regeneration by a transient sodium current

Author(s): Tseng AS, Beane WS, Lemire JM, Masi A, Levin M

Plasticity in the intrinsic excitability of cortical pyramidal neurons

Author(s): Desai NS, Rutherford LC, Turrigiano GG

AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke

Author(s): Clarkson AN, Overman JJ, Zhong S, Mueller R, Lynch G, et al.

The role of injury discharge in the induction of neuropathic pain behavior in rats

Author(s): Seltzer Z, Beilin BZ, Ginzburg R, Paran Y, Shimko T

ATP release from dorsal spinal cord synaptosomes: characterization and neuronal origin

Author(s): Sawynok J, Downie JW, Reid AR, Cahill CM, White TD

Spinal cord injury immediately decreases anesthetic requirements in rats

Author(s): Foffani G, Humanes-Valera D, Calderon-Muñoz F, Oliviero A, Aguilar J

The effect of glutamate receptor blockers on glutamate release following spinal cord injury

Author(s): McAdoo DJ, Hughes MG, Nie L, Shah B, Clifton C, et al.

Pulmonary vasodilation by ketamine is mediated in part by L-type calcium channels

Author(s): Kaye AD, Banister RE, Anwar M, Feng CJ, Kadowitz PJ, et al.

Neuroprotective effects of riluzole and ketamine during transient spinal cord ischemia in the rabbit

Author(s): Lips J, de Haan P, Bodewits P, Vanicky I, Dzoljic M, et al.

The involvement of the mu-opioid receptor in ketamine-induced respiratory depression and antinociception

Author(s): Sarton E, Teppema LJ, Olievier C, Nieuwenhuijs D, Matthes HW, et al.

Role of kappa-opioid receptors in the effects of salvinorin A and ketamine on attention in rats

Author(s): Nemeth CL, Paine TA, Rittiner JE, Béguin C, Carroll FI, et al.

Calcium-dependent glutamate release concomitant with massive potassium flux during cerebral ischemia in vivo

Author(s): Katayama Y, Kawamata T, Tamura T, Hovda DA, Becker DP, et al.

Regional distribution and postnatal changes of D-amino acids in rat brain

Author(s): Hamase K, Homma H, Takigawa Y, Fukushima T, Santa T, et al.

Characterization of electrically evoked [3H]-D-aspartate release from hippocampal slices

Author(s): Savage DD, Galindo R, Queen SA, Paxton LL, Allan AM

Spinal cord injury causes a wide-spread, persistent loss of Kir4

Author(s): Olsen ML, Campbell SC, McFerrin MB, Floyd CL, Sontheimer H

Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake

Author(s): Levenson J, Weeber E, Selcher JC, Kategaya LS, Sweatt JD, et al.

Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation

Author(s): Correia SS, Bassani S, Brown TC, Lisé MF, Backos DS, et al.

Differential trafficking of AMPA and NMDA receptors during long-term potentiation in awake adult animals

Author(s): Williams JM, Guévremont D, Mason-Parker SE, Luxmanan C, Tate WP, et al.

Effect of intravenous lidocaine on experimental spinal cord injury

Author(s): Kobrine AI, Evans DE, LeGrys DC, Yaffe LJ, Bradley ME

Effect of lidocaine treatment on acute spinal cord injury

Author(s): Haghighi SS, Chehrazi BB, Higgins RS, Remington WJ, Wagner FC

Protection against experimental ischemic spinal cord injury

Author(s): Robertson CS, Foltz R, Grossman RG, Goodman JC