Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury? J Neurotrauma 14: 677-698

Author(s): Obrenovitch TP, Urenjak J

Abstract

Traumatic brain injury (TBI) increases extracellular levels of the excitatory amino acid glutamate and aspartate, and N-methyl-D aspartate (NMDA)-receptor antagonists protect against experimental TBI. These two findings have led to the prevalent hypothesis that excitatory amino acid efflux is a major contributor to the development of neuronal damage subsequent to traumatic injury. However, as with stroke, the hypothesis that high extracellular glutamate is the key to excitotoxicity in TBI conflicts with important data. For example, the initial increase in extracellular glutamate is cleared within 5 min after moderate TBI, whereas antagonists of glutamate receptors and the so- called presynaptic glutamate release inhibitors remain effective when administered 30 min after insult. In this article, we argue that the current concept of excitotoxicity in TBI, centered on high extracellular glutamate, does not withstand scientific scrutiny. As alternatives to explain the beneficial actions of glutamate antagonists in experimental TBI, we propose abnormalities of glutamatergic neurotransmission, such as deficient Mg2+ block of NMDA-receptor ionophore complexes, and phenomena such as spreading depression, which requires activation of glutamate receptors and is detrimental to neurons in damaged/vulnerable brain regions. Finally, we introduce the notion that beneficial effects of glutamate receptor antagonists in experimental models of neurological disorders do not necessarily imply the occurrence of excitotoxic processes. Indeed, glutamate-receptor blockade may be protective by reducing the energy demand required to counterbalance Na+ influx associated with glutamatergic synaptic transmission. In other words, glutamate receptor antagonists (and blockers of voltage-gated Na+-channels) may help nervous tissue to cope with increased permeability of the cellular membrane to ions and reduced efficacy of Na+ extrusion, and thus prevent the decay of transmembrane ionic concentrations gradients.

Similar Articles

Induction of vertebrate regeneration by a transient sodium current

Author(s): Tseng AS, Beane WS, Lemire JM, Masi A, Levin M

Plasticity in the intrinsic excitability of cortical pyramidal neurons

Author(s): Desai NS, Rutherford LC, Turrigiano GG

AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke

Author(s): Clarkson AN, Overman JJ, Zhong S, Mueller R, Lynch G, et al.

The role of injury discharge in the induction of neuropathic pain behavior in rats

Author(s): Seltzer Z, Beilin BZ, Ginzburg R, Paran Y, Shimko T

ATP release from dorsal spinal cord synaptosomes: characterization and neuronal origin

Author(s): Sawynok J, Downie JW, Reid AR, Cahill CM, White TD

Spinal cord injury immediately decreases anesthetic requirements in rats

Author(s): Foffani G, Humanes-Valera D, Calderon-Muñoz F, Oliviero A, Aguilar J

The effect of glutamate receptor blockers on glutamate release following spinal cord injury

Author(s): McAdoo DJ, Hughes MG, Nie L, Shah B, Clifton C, et al.

Pulmonary vasodilation by ketamine is mediated in part by L-type calcium channels

Author(s): Kaye AD, Banister RE, Anwar M, Feng CJ, Kadowitz PJ, et al.

Neuroprotective effects of riluzole and ketamine during transient spinal cord ischemia in the rabbit

Author(s): Lips J, de Haan P, Bodewits P, Vanicky I, Dzoljic M, et al.

The involvement of the mu-opioid receptor in ketamine-induced respiratory depression and antinociception

Author(s): Sarton E, Teppema LJ, Olievier C, Nieuwenhuijs D, Matthes HW, et al.

Role of kappa-opioid receptors in the effects of salvinorin A and ketamine on attention in rats

Author(s): Nemeth CL, Paine TA, Rittiner JE, Béguin C, Carroll FI, et al.

Calcium-dependent glutamate release concomitant with massive potassium flux during cerebral ischemia in vivo

Author(s): Katayama Y, Kawamata T, Tamura T, Hovda DA, Becker DP, et al.

Regional distribution and postnatal changes of D-amino acids in rat brain

Author(s): Hamase K, Homma H, Takigawa Y, Fukushima T, Santa T, et al.

Characterization of electrically evoked [3H]-D-aspartate release from hippocampal slices

Author(s): Savage DD, Galindo R, Queen SA, Paxton LL, Allan AM

Spinal cord injury causes a wide-spread, persistent loss of Kir4

Author(s): Olsen ML, Campbell SC, McFerrin MB, Floyd CL, Sontheimer H

Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake

Author(s): Levenson J, Weeber E, Selcher JC, Kategaya LS, Sweatt JD, et al.

Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation

Author(s): Correia SS, Bassani S, Brown TC, Lisé MF, Backos DS, et al.

Differential trafficking of AMPA and NMDA receptors during long-term potentiation in awake adult animals

Author(s): Williams JM, Guévremont D, Mason-Parker SE, Luxmanan C, Tate WP, et al.

Effect of intravenous lidocaine on experimental spinal cord injury

Author(s): Kobrine AI, Evans DE, LeGrys DC, Yaffe LJ, Bradley ME

Effect of lidocaine treatment on acute spinal cord injury

Author(s): Haghighi SS, Chehrazi BB, Higgins RS, Remington WJ, Wagner FC

Protection against experimental ischemic spinal cord injury

Author(s): Robertson CS, Foltz R, Grossman RG, Goodman JC