Injury discharges regulate calcium channel alpha-2-delta-1 subunit upregulation in the dorsal horn that contributes to initiation of neuropathic pain

Author(s): Boroujerdi A, Kim HK, Lyu YS, Kim DS, Figueroa KW, et al.

Abstract

Previous studies have shown that peripheral nerve injury in rats induces increased expression of the voltage gated calcium channel (VGCC) alpha-2-delta-1 subunit (Ca v alpha2 delta1) in spinal dorsal horn and sensory neurons in dorsal root ganglia (DRG) that correlates to established neuropathic pain states. To determine if injury discharges trigger Ca v alpha2 delta1 induction that contributes to neuropathic pain initiation, we examined allodynia onset and Ca v alpha2 delta1 levels in DRG and spinal dorsal horn of spinal nerve ligated rats after blocking injury induced neural activity with a local brief application of lidocaine on spinal nerves before the ligation. The lidocaine pretreatment blocked ligation-induced discharges in a dose-dependent manner. Similar pretreatment with the effective concentration of lidocaine diminished injury-induced increases of the Ca v alpha2 delta1 in DRG and abolished that in spinal dorsal horn specifically, and resulted in a delayed onset of tactile allodynia post-injury. Both dorsal horn Ca v alpha2 delta1 upregulation and tactile allodynia in the lidocaine pretreated rats returned to levels similar to that in saline pretreated controls 2 weeks post the ligation injury. In addition, preemptive intrathecal Ca v alpha2 delta1 antisense treatments blocked concurrently injury-induced allodynia onset and Ca v alpha2 delta1 upregulation in dorsal spinal cord. These findings indicate that injury induced discharges regulate Ca v alpha2 delta1 expression in the spinal dorsal horn that is critical for neuropathic allodynia initiation. Thus, preemptive blockade of injury-induced neural activity or Ca v alpha2 delta1 upregulation may be a beneficial option in neuropathic pain management.

Similar Articles

Induction of vertebrate regeneration by a transient sodium current

Author(s): Tseng AS, Beane WS, Lemire JM, Masi A, Levin M

Plasticity in the intrinsic excitability of cortical pyramidal neurons

Author(s): Desai NS, Rutherford LC, Turrigiano GG

AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke

Author(s): Clarkson AN, Overman JJ, Zhong S, Mueller R, Lynch G, et al.

The role of injury discharge in the induction of neuropathic pain behavior in rats

Author(s): Seltzer Z, Beilin BZ, Ginzburg R, Paran Y, Shimko T

ATP release from dorsal spinal cord synaptosomes: characterization and neuronal origin

Author(s): Sawynok J, Downie JW, Reid AR, Cahill CM, White TD

Spinal cord injury immediately decreases anesthetic requirements in rats

Author(s): Foffani G, Humanes-Valera D, Calderon-Muñoz F, Oliviero A, Aguilar J

The effect of glutamate receptor blockers on glutamate release following spinal cord injury

Author(s): McAdoo DJ, Hughes MG, Nie L, Shah B, Clifton C, et al.

Pulmonary vasodilation by ketamine is mediated in part by L-type calcium channels

Author(s): Kaye AD, Banister RE, Anwar M, Feng CJ, Kadowitz PJ, et al.

Neuroprotective effects of riluzole and ketamine during transient spinal cord ischemia in the rabbit

Author(s): Lips J, de Haan P, Bodewits P, Vanicky I, Dzoljic M, et al.

The involvement of the mu-opioid receptor in ketamine-induced respiratory depression and antinociception

Author(s): Sarton E, Teppema LJ, Olievier C, Nieuwenhuijs D, Matthes HW, et al.

Role of kappa-opioid receptors in the effects of salvinorin A and ketamine on attention in rats

Author(s): Nemeth CL, Paine TA, Rittiner JE, Béguin C, Carroll FI, et al.

Calcium-dependent glutamate release concomitant with massive potassium flux during cerebral ischemia in vivo

Author(s): Katayama Y, Kawamata T, Tamura T, Hovda DA, Becker DP, et al.

Regional distribution and postnatal changes of D-amino acids in rat brain

Author(s): Hamase K, Homma H, Takigawa Y, Fukushima T, Santa T, et al.

Characterization of electrically evoked [3H]-D-aspartate release from hippocampal slices

Author(s): Savage DD, Galindo R, Queen SA, Paxton LL, Allan AM

Spinal cord injury causes a wide-spread, persistent loss of Kir4

Author(s): Olsen ML, Campbell SC, McFerrin MB, Floyd CL, Sontheimer H

Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake

Author(s): Levenson J, Weeber E, Selcher JC, Kategaya LS, Sweatt JD, et al.

Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation

Author(s): Correia SS, Bassani S, Brown TC, Lisé MF, Backos DS, et al.

Differential trafficking of AMPA and NMDA receptors during long-term potentiation in awake adult animals

Author(s): Williams JM, Guévremont D, Mason-Parker SE, Luxmanan C, Tate WP, et al.

Effect of intravenous lidocaine on experimental spinal cord injury

Author(s): Kobrine AI, Evans DE, LeGrys DC, Yaffe LJ, Bradley ME

Effect of lidocaine treatment on acute spinal cord injury

Author(s): Haghighi SS, Chehrazi BB, Higgins RS, Remington WJ, Wagner FC

Protection against experimental ischemic spinal cord injury

Author(s): Robertson CS, Foltz R, Grossman RG, Goodman JC