Synthesis and characterization of PEGylated calcium phosphate nanoparticles for oral insulin delivery

Author(s): Ramachandran R, Paul W, Sharma CP

Abstract

The inconvenience of subcutaneous insulin delivery leads to low patient compliance with the dosage regimens. The most desirable form of administration seems to be through the oral route. This work investigates the utility of PEGylated calcium phosphate nanoparticles as oral carriers for insulin. Calcium phosphate nanoparticles (CaP) with an average particle size of 47.9 nm (D50) were synthesized and surface modified by conjugating it with poly(ethylene glycol) (PEG). These modified nanoparticles were having a near zero zeta potential. Protection of insulin from the gastric environment has been achieved by coating the nanoparticles with a pH sensitive polymer that will dissolve in the mildly alkaline pH environment of the intestine. The release profiles of coated nanoparticles exhibited negligible release in acidic (gastric) pH, i.e., only 2% for CaP and 6.5% for PEGylated CaP. However, a sustained release of insulin was observed at neutral (intestinal) pH for over 8 h. The conformation of the released insulin, studied using circular dichroism, was unaltered when compared with native insulin. The released insulin was also stable as it was studied using dynamic light scattering. Radioimmunoassay was performed and the immunoreactivity of the released insulin was found to be intact. These results suggest PEGylated calcium phosphate nanoparticles as an excellent carrier system for insulin toward the development of an oral insulin delivery system.

Similar Articles

Insulin

Author(s): Beals J, Brader M, De Felippis M, Kovach P

Diagnosis and Classification of Diabetes Mellitus

Author(s): American Diabetes Association

Oral insulin delivery: how far are we? J Diabetes Sci Technol 7: 520-531

Author(s): Fonte P, Araújo F, Reis S, Sarmento B

Insulin: discovery and controversy

Author(s): Rosenfeld L

Polymeric hydrogels for oral insulin delivery

Author(s): Chaturvedi K, Ganguly K, Nadagouda MN, Aminabhavi TM

Dose response to oral insulin capsules in fasting, healthy subjects

Author(s): Eldor R, Arbit E, Schurr D, Kidron M, Hersko A

Injectable nano-network for glucose-mediated insulin delivery

Author(s): Gu Z, Aimetti AA, Wang Q, Dang TT, Zhang Y, et al.

Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin

Author(s): Zhang N, Ping Q, Huang G, Xu W, Cheng Y, et al.

Developments in polymeric devices for oral insulin delivery

Author(s): Babu VR, Patel P, Mundargi RC, Rangaswamy V, Aminabhavi TM

Nanoparticle strategies for the oral delivery of insulin

Author(s): Damgé C, Reis CP, Maincent P

Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach

Author(s): des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V

Nanosphere based oral insulin delivery

Author(s): Carino GP, Jacob JS, Mathiowitz E

Cross-linked chitosan microspheres for oral delivery of insulin: Taguchi design and in vivo testing

Author(s): Jose S, Fangueiro JF, Smitha J, Cinu TA, Chacko AJ, et al.

Oral insulin delivery by means of solid lipid nanoparticles

Author(s): Sarmento B, Martins S, Ferreira D, Souto EB

Nanomedicine for diabetes treatment

Author(s): Sung HW, Sonaje K, Feng SS

Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles

Author(s): Chalasani KB, Russell-Jones GJ, Jain AK, Diwan PV, Jain SK

Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery

Author(s): Severino P, Andreani T, Macedo AS, Fangueiro JF, Santana MH, et al.

pH-Sensitive oral insulin delivery systems using Eudragit microspheres

Author(s): Mundargi RC, Rangaswamy V, Aminabhavi TM

Evaluation of an oral insulin formulation in normal and diabetic rats

Author(s): Najafzadeh H, Kooshapur H, Kianidehkordi F

Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery

Author(s): Pridgen EM, Alexis F, Kuo TT, Levy-Nissenbaum E, Karnik R, et al.

Insulin: A new era for an old hormone

Author(s): Sabetsky V, Ekblom J