Injectable nano-network for glucose-mediated insulin delivery

Author(s): Gu Z, Aimetti AA, Wang Q, Dang TT, Zhang Y, et al.

Abstract

Diabetes mellitus, a disorder of glucose regulation, is a global burden affecting 366 million people across the world. An artificial "closed-loop" system able to mimic pancreas activity and release insulin in response to glucose level changes has the potential to improve patient compliance and health. Herein we develop a glucose-mediated release strategy for the self-regulated delivery of insulin using an injectable and acid-degradable polymeric network. Formed by electrostatic interaction between oppositely charged dextran nanoparticles loaded with insulin and glucose-specific enzymes, the nanocomposite-based porous architecture can be dissociated and subsequently release insulin in a hyperglycemic state through the catalytic conversion of glucose into gluconic acid. In vitro insulin release can be modulated in a pulsatile profile in response to glucose concentrations. In vivo studies validated that these formulations provided improved glucose control in type 1 diabetic mice subcutaneously administered with a degradable nano-network. A single injection of the developed nano-network facilitated stabilization of the blood glucose levels in the normoglycemic state (<200 mg/dL) for up to 10 days.

Similar Articles

Insulin

Author(s): Beals J, Brader M, De Felippis M, Kovach P

Diagnosis and Classification of Diabetes Mellitus

Author(s): American Diabetes Association

Oral insulin delivery: how far are we? J Diabetes Sci Technol 7: 520-531

Author(s): Fonte P, Araújo F, Reis S, Sarmento B

Insulin: discovery and controversy

Author(s): Rosenfeld L

Polymeric hydrogels for oral insulin delivery

Author(s): Chaturvedi K, Ganguly K, Nadagouda MN, Aminabhavi TM

Dose response to oral insulin capsules in fasting, healthy subjects

Author(s): Eldor R, Arbit E, Schurr D, Kidron M, Hersko A

Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin

Author(s): Zhang N, Ping Q, Huang G, Xu W, Cheng Y, et al.

Developments in polymeric devices for oral insulin delivery

Author(s): Babu VR, Patel P, Mundargi RC, Rangaswamy V, Aminabhavi TM

Nanoparticle strategies for the oral delivery of insulin

Author(s): Damgé C, Reis CP, Maincent P

Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach

Author(s): des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V

Nanosphere based oral insulin delivery

Author(s): Carino GP, Jacob JS, Mathiowitz E

Cross-linked chitosan microspheres for oral delivery of insulin: Taguchi design and in vivo testing

Author(s): Jose S, Fangueiro JF, Smitha J, Cinu TA, Chacko AJ, et al.

Oral insulin delivery by means of solid lipid nanoparticles

Author(s): Sarmento B, Martins S, Ferreira D, Souto EB

Nanomedicine for diabetes treatment

Author(s): Sung HW, Sonaje K, Feng SS

Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles

Author(s): Chalasani KB, Russell-Jones GJ, Jain AK, Diwan PV, Jain SK

Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery

Author(s): Severino P, Andreani T, Macedo AS, Fangueiro JF, Santana MH, et al.

pH-Sensitive oral insulin delivery systems using Eudragit microspheres

Author(s): Mundargi RC, Rangaswamy V, Aminabhavi TM

Evaluation of an oral insulin formulation in normal and diabetic rats

Author(s): Najafzadeh H, Kooshapur H, Kianidehkordi F

Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery

Author(s): Pridgen EM, Alexis F, Kuo TT, Levy-Nissenbaum E, Karnik R, et al.

Insulin: A new era for an old hormone

Author(s): Sabetsky V, Ekblom J