Nanosphere based oral insulin delivery

Author(s): Carino GP, Jacob JS, Mathiowitz E

Abstract

Zinc insulin is successfully encapsulated in various polyester and polyanhydride nanosphere formulations using Phase Inversion Nanoencapsulation (PIN). The encapsulated insulin maintains its biological activity and is released from the nanospheres over a span of approximately 6 h. A specific formulation, 1.6% zinc insulin in poly(lactide-co-glycolide) (PLGA) with fumaric anhydride oligimer and iron oxide additives has been shown to be active orally. This formulation is shown to have 11.4% of the efficacy of intraperitoneally delivered zinc insulin and is able to control plasma glucose levels when faced with a simultaneously administered glucose challenge. A number of properties of this formulation, including size, release kinetics, bioadhesiveness and ability to traverse the gastrointestinal epithelium, are likely to contribute to its oral efficacy.

Similar Articles

Insulin

Author(s): Beals J, Brader M, De Felippis M, Kovach P

Diagnosis and Classification of Diabetes Mellitus

Author(s): American Diabetes Association

Oral insulin delivery: how far are we? J Diabetes Sci Technol 7: 520-531

Author(s): Fonte P, Araújo F, Reis S, Sarmento B

Insulin: discovery and controversy

Author(s): Rosenfeld L

Polymeric hydrogels for oral insulin delivery

Author(s): Chaturvedi K, Ganguly K, Nadagouda MN, Aminabhavi TM

Dose response to oral insulin capsules in fasting, healthy subjects

Author(s): Eldor R, Arbit E, Schurr D, Kidron M, Hersko A

Injectable nano-network for glucose-mediated insulin delivery

Author(s): Gu Z, Aimetti AA, Wang Q, Dang TT, Zhang Y, et al.

Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin

Author(s): Zhang N, Ping Q, Huang G, Xu W, Cheng Y, et al.

Developments in polymeric devices for oral insulin delivery

Author(s): Babu VR, Patel P, Mundargi RC, Rangaswamy V, Aminabhavi TM

Nanoparticle strategies for the oral delivery of insulin

Author(s): Damgé C, Reis CP, Maincent P

Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach

Author(s): des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V

Cross-linked chitosan microspheres for oral delivery of insulin: Taguchi design and in vivo testing

Author(s): Jose S, Fangueiro JF, Smitha J, Cinu TA, Chacko AJ, et al.

Oral insulin delivery by means of solid lipid nanoparticles

Author(s): Sarmento B, Martins S, Ferreira D, Souto EB

Nanomedicine for diabetes treatment

Author(s): Sung HW, Sonaje K, Feng SS

Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles

Author(s): Chalasani KB, Russell-Jones GJ, Jain AK, Diwan PV, Jain SK

Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery

Author(s): Severino P, Andreani T, Macedo AS, Fangueiro JF, Santana MH, et al.

pH-Sensitive oral insulin delivery systems using Eudragit microspheres

Author(s): Mundargi RC, Rangaswamy V, Aminabhavi TM

Evaluation of an oral insulin formulation in normal and diabetic rats

Author(s): Najafzadeh H, Kooshapur H, Kianidehkordi F

Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery

Author(s): Pridgen EM, Alexis F, Kuo TT, Levy-Nissenbaum E, Karnik R, et al.

Insulin: A new era for an old hormone

Author(s): Sabetsky V, Ekblom J