Oral delivery of insulin: Novel approaches

Author(s): Elsayed AM

Abstract

Insulin is a hormone that is synthesized in the β-cells of the pancreas as a proinsulin precursor and is converted to insulin by enzymatic cleavage. The resulting insulin molecule is composed of 51 amino acids arranged into two polypeptide chains - the A and B chains - which are connected by two interchain disulphide bridges. In the A chain, there is an additional intrachain disulphide linkage [1]. The primary structure of human insulin is shown in Figure 1 a. In the secondary structure, chain A consists of two antiparallel α-helices (A2 to A8 and A13 to A20), while chain B forms a single α-helix “B9 to B19” followed by a turn and a β strand “B21 and B30” [2]. The folding of insulin into a tertiary structure is essential for its biological activity (Figure 1b). Insulin has an isoelectric point (pI) of 5.3 and a charge of -2 to -6 in the pH range 7-11. Another intrinsic property of insulin is its ability to readily associate into dimmers, hexamers and higher-order aggregates. At the low concentrations found in the blood stream (< 10-3 µM), insulin exists as a monomer, which is its biologically active form. Following biosynthesis, insulin is stored as crystalline zinc-bound hexamers in vesicles within the pancreatic β-cells from which secretion occurs in response to elevated blood glucose levels [3]. The biological actions of insulin are initiated when insulin binds to its cell surface receptor. Insulin is an anabolic hormone and when binding to its receptor begins, many protein activation cascades occur. These include: the translocation of the glucose transporter to the plasma membrane and the influx of glucose, glycogen synthesis, glycolysis and fatty acid synthesis. Insulin has been observed as promoting the transport of some amino acids and potassium ions. Insulin also inhibits the liberation of free fatty acids and glycerol from the adipose tissue [3].

Similar Articles

Insulin

Author(s): Beals J, Brader M, De Felippis M, Kovach P

Diagnosis and Classification of Diabetes Mellitus

Author(s): American Diabetes Association

Oral insulin delivery: how far are we? J Diabetes Sci Technol 7: 520-531

Author(s): Fonte P, Araújo F, Reis S, Sarmento B

Insulin: discovery and controversy

Author(s): Rosenfeld L

Polymeric hydrogels for oral insulin delivery

Author(s): Chaturvedi K, Ganguly K, Nadagouda MN, Aminabhavi TM

Dose response to oral insulin capsules in fasting, healthy subjects

Author(s): Eldor R, Arbit E, Schurr D, Kidron M, Hersko A

Injectable nano-network for glucose-mediated insulin delivery

Author(s): Gu Z, Aimetti AA, Wang Q, Dang TT, Zhang Y, et al.

Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin

Author(s): Zhang N, Ping Q, Huang G, Xu W, Cheng Y, et al.

Developments in polymeric devices for oral insulin delivery

Author(s): Babu VR, Patel P, Mundargi RC, Rangaswamy V, Aminabhavi TM

Nanoparticle strategies for the oral delivery of insulin

Author(s): Damgé C, Reis CP, Maincent P

Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach

Author(s): des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V

Nanosphere based oral insulin delivery

Author(s): Carino GP, Jacob JS, Mathiowitz E

Cross-linked chitosan microspheres for oral delivery of insulin: Taguchi design and in vivo testing

Author(s): Jose S, Fangueiro JF, Smitha J, Cinu TA, Chacko AJ, et al.

Oral insulin delivery by means of solid lipid nanoparticles

Author(s): Sarmento B, Martins S, Ferreira D, Souto EB

Nanomedicine for diabetes treatment

Author(s): Sung HW, Sonaje K, Feng SS

Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles

Author(s): Chalasani KB, Russell-Jones GJ, Jain AK, Diwan PV, Jain SK

Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery

Author(s): Severino P, Andreani T, Macedo AS, Fangueiro JF, Santana MH, et al.

pH-Sensitive oral insulin delivery systems using Eudragit microspheres

Author(s): Mundargi RC, Rangaswamy V, Aminabhavi TM

Evaluation of an oral insulin formulation in normal and diabetic rats

Author(s): Najafzadeh H, Kooshapur H, Kianidehkordi F

Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery

Author(s): Pridgen EM, Alexis F, Kuo TT, Levy-Nissenbaum E, Karnik R, et al.

Insulin: A new era for an old hormone

Author(s): Sabetsky V, Ekblom J