Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: The effect of cholate type, particle size and administered dose

Author(s): Niu M, Lua Y, Hovgaard L, Guan P, Tan Y, et al.

Abstract

Oral delivery of protein or polypeptide drugs remains a challenge due to gastric and enzymatic degradation as well as poor permeation across the intestinal epithelia. In this study, liposomes containing bile salts were developed as a new oral insulin delivery system. The primary goal was to investigate the effect of cholate type, particle size and dosage of the liposomes on the hypoglycemic activity and oral bioavailability. Liposomes containing sodium glycocholate (SGC), sodium taurocholate (STC) or sodium deoxycholate (SDC) were prepared by a reversed-phase evaporation method. After oral administration, all liposomes elicited a certain degree of hypoglycemic effect in parallel with an increase in blood insulin level. The highest oral bioavailability of approximately 8.5% and 11.0% could be observed with subcutaneous insulin as reference for SGC-liposomes in non-diabetic and diabetic rats, respectively. Insulin-loaded liposomes showed slower and sustained action over a period of over 20 h with peak time around 8–12 h. SGC-liposomes showed higher oral bioavailability than liposomes containing STC or SDC and conventional liposomes. The hypoglycemic effect was size-dependent with the highest at 150 nm or 400 nm and was proportionally correlated to the administered dose. The results supported the hypothesis of insulin absorption as intact liposomes.

Similar Articles

Insulin

Author(s): Beals J, Brader M, De Felippis M, Kovach P

Diagnosis and Classification of Diabetes Mellitus

Author(s): American Diabetes Association

Oral insulin delivery: how far are we? J Diabetes Sci Technol 7: 520-531

Author(s): Fonte P, Araújo F, Reis S, Sarmento B

Insulin: discovery and controversy

Author(s): Rosenfeld L

Polymeric hydrogels for oral insulin delivery

Author(s): Chaturvedi K, Ganguly K, Nadagouda MN, Aminabhavi TM

Dose response to oral insulin capsules in fasting, healthy subjects

Author(s): Eldor R, Arbit E, Schurr D, Kidron M, Hersko A

Injectable nano-network for glucose-mediated insulin delivery

Author(s): Gu Z, Aimetti AA, Wang Q, Dang TT, Zhang Y, et al.

Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin

Author(s): Zhang N, Ping Q, Huang G, Xu W, Cheng Y, et al.

Developments in polymeric devices for oral insulin delivery

Author(s): Babu VR, Patel P, Mundargi RC, Rangaswamy V, Aminabhavi TM

Nanoparticle strategies for the oral delivery of insulin

Author(s): Damgé C, Reis CP, Maincent P

Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach

Author(s): des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V

Nanosphere based oral insulin delivery

Author(s): Carino GP, Jacob JS, Mathiowitz E

Cross-linked chitosan microspheres for oral delivery of insulin: Taguchi design and in vivo testing

Author(s): Jose S, Fangueiro JF, Smitha J, Cinu TA, Chacko AJ, et al.

Oral insulin delivery by means of solid lipid nanoparticles

Author(s): Sarmento B, Martins S, Ferreira D, Souto EB

Nanomedicine for diabetes treatment

Author(s): Sung HW, Sonaje K, Feng SS

Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles

Author(s): Chalasani KB, Russell-Jones GJ, Jain AK, Diwan PV, Jain SK

Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery

Author(s): Severino P, Andreani T, Macedo AS, Fangueiro JF, Santana MH, et al.

pH-Sensitive oral insulin delivery systems using Eudragit microspheres

Author(s): Mundargi RC, Rangaswamy V, Aminabhavi TM

Evaluation of an oral insulin formulation in normal and diabetic rats

Author(s): Najafzadeh H, Kooshapur H, Kianidehkordi F

Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery

Author(s): Pridgen EM, Alexis F, Kuo TT, Levy-Nissenbaum E, Karnik R, et al.

Insulin: A new era for an old hormone

Author(s): Sabetsky V, Ekblom J