Promotion of growth in mungbean (Phaseolus aureus Roxb

Author(s): Malik JA, Kumar S, Thakur P, Sharma S, Kaur R, et al.

Abstract

The mungbean plants were grown hydroponically in the absence (control) or presence of 0.1, 0.25, 0.50 and 0.75 ppm selenium (as sodium selenate) for 10 days. The growth of shoots and roots increased with application of selenium with greater extent in shoots. With 0.5 and 0.75 ppm Se levels, the shoot growth was stimulated by 24% to 27% over control, respectively, while the roots showed a corresponding increase of 18–19%, respectively. The shoot-to-root ratio was enhanced significantly with Se application and maximum effects occurred at 0.75 ppm Se. A significant increase was observed in chlorophyll and cellular respiration ability with 0.5 and 0.75 ppm selenium. The increase in growth by selenium was accompanied by elevation of starch, sucrose and reducing sugars. The activity of starch hydrolysing enzymes—amylases and sucrose hydrolysing enzyme—invertase was stimulated significantly with selenium. This was associated with elevation of activities of sucrose synthesising enzymes—sucrose synthase and sucrose phosphate synthase. It was concluded that increase in growth of shoots and roots by application of Se was possibly the result of up-regulation of enzymes of carbohydrate metabolism thus providing energy substrates for enhanced growth.

Similar Articles

  Cowpea: Alternative field crops manual

Author(s): Davis DW, Oelke EA, Oplinger ES, Doll JD, Hanson CV, et al.

Cowpea (Vigna unguiculata L

Author(s): Ehlers JD, Hall AE

Cowpea: An overview on its nutritional facts and health benefits

Author(s): Jayathilake C, Visvanathan R, Deen A, Bangamuwage R, Jayawardana BC, et al.

Foliar application of glycinebetaine–A novel product from sugar beet–As an approach to increase tomato yield

Author(s): Makela MP, Jokinen K, Kontturi M, Peltonen-Sainio M, Pehu E, et al.

Nutrient uptake changes in ascorbate free radical-stimulated roots

Author(s): Gonzalez-Reyes JA, Hidalgo A, Caler JA, Palos R, Navas P

Selenium in higher plants: Understanding mechanisms for biofortification and phytoremediaton

Author(s): Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA

Free radical scavenging efficiency of Nano-Se in vitro

Author(s): Huang B, Zhang J, Hou J, Chen C

Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum

Author(s): Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, et al.

on antioxidant enzymes activities, lipid peroxidation and proline accumulation of Canola

Author(s): Dolatabadian A, Sanavy SAMM, Chashmi NA (2008)

Self fruit extract and vitamin-C improves tomato seed germination

Author(s): Barh D, Srivastava HC, Mazumdar BC

 Methods of enzymatic analysis

Author(s): Bergmeyer HU

Protein measurement with the Folin phenol reagent

Author(s): Lowry OH, Rosebrough NJ, Farr AL, Randell RJ

Selenium as an anti-oxidant and pro-oxidant in ryegrass

Author(s): Hartikainen H, Xue T, Piironen V

The importance of selenium biofortification in food crop

Author(s): Garcia-Bañuelos LM, Hermosillo-Cerec MA, Sanchez E

Rice seed invigoration: a review

Author(s): Farooq M, Basra SMA, Wahid A, Khaliq A, Kobayashi N

Seed priming with selenium: Consequences for emergence, seedling growth, and biochemical attributes of rice

Author(s): Abdul Khaliq, Aslam F, Matloob A, Hussain S, Geng M, et al.

Toward a molecular understanding of plant hormone actions

Author(s): Li C, Li J, Chong K, Harter K, Lee Y, et al.

Ameliorative effect of selenium on tomato plants grown under salinity stress

Author(s): Mozafariyan M, Kamelmanesh MM, Hawrylak-Nowak B

Selenium–an antioxidative protectant in soybean during senescence

Author(s): Djanaguiraman M, Devi DD, Shanker AK, Sheeba A, Bangarusamy U

Selenium in medicine and treatment

Author(s): Frączek A, Pasterniak K

Respiratory potential and Se compounds in pea (Pisum sativum L

Author(s): Smrkolj P, Germ M, Kreft I, Stibilj V

Antioxidant systems in sunflower (Helianthus annuus L

Author(s): Bailly C, Benamar A, Corbineau F, Come D

Metabolic importance of selenium for plants

Author(s): Germ M, Stibilj V, Kreft I

The Effects of Ascorbic Acid on Breaking the seed dormancy of Malussieversii

Author(s): Niu J,  Zhao L, Fan Y, Shi S, He L, et al.