Antioxidant systems in sunflower (Helianthus annuus L

Author(s): Bailly C, Benamar A, Corbineau F, Come D

Abstract

Priming treatment of sunflower (Helianthus annuus L., cv Briosol) seeds for 7 days at 15°C with a polyethylene glycol solution at −2.0 MPa strongly improved their subsequent germination at 15°C on water. This stimulatory effect of priming remained after drying back the seeds at 20°C for 3 days. Malondialdehyde (MDA) and activities of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) were measured in control unprimed seeds, primed seeds, seeds primed then dried, and after 3 and 6 hours of imbibition of controland dried primed seeds in order to determine whether the cell antioxidant systems were involved in the beneficial effect of priming. The osmotreatment resulted in a strong increase in SOD and CAT activities but did not markedly affect MDA and GR activity. Following the 3 days of drying, MDA increased and the enzyme activities became similar to those measured in dry unprimed seeds, although the stimulatory effect of priming on germination remained. Imbibition of control dry seeds was associated with an increase in MDA and a decrease in CAT and GR activities, whereas reimbibition of dried primed seeds resulted in a decrease in MDA and an increase in SOD, CAT and GR activities. Isoform patterns on native gels showed no difference between treated (priming with or without subsequent drying) and control seeds for SOD (7 isoforms) and GR (5 isoforms), but the osmotreatment did induce a second isoform of CAT. The results obtained indicate that the CAT isoform pattern might be used as an indicato of the priming treatment that promotes germination. Involvement of theantioxidant systems in seed vigour is discussed

Similar Articles

  Cowpea: Alternative field crops manual

Author(s): Davis DW, Oelke EA, Oplinger ES, Doll JD, Hanson CV, et al.

Cowpea (Vigna unguiculata L

Author(s): Ehlers JD, Hall AE

Cowpea: An overview on its nutritional facts and health benefits

Author(s): Jayathilake C, Visvanathan R, Deen A, Bangamuwage R, Jayawardana BC, et al.

Foliar application of glycinebetaine–A novel product from sugar beet–As an approach to increase tomato yield

Author(s): Makela MP, Jokinen K, Kontturi M, Peltonen-Sainio M, Pehu E, et al.

Nutrient uptake changes in ascorbate free radical-stimulated roots

Author(s): Gonzalez-Reyes JA, Hidalgo A, Caler JA, Palos R, Navas P

Selenium in higher plants: Understanding mechanisms for biofortification and phytoremediaton

Author(s): Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA

Free radical scavenging efficiency of Nano-Se in vitro

Author(s): Huang B, Zhang J, Hou J, Chen C

Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum

Author(s): Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, et al.

on antioxidant enzymes activities, lipid peroxidation and proline accumulation of Canola

Author(s): Dolatabadian A, Sanavy SAMM, Chashmi NA (2008)

Self fruit extract and vitamin-C improves tomato seed germination

Author(s): Barh D, Srivastava HC, Mazumdar BC

 Methods of enzymatic analysis

Author(s): Bergmeyer HU

Protein measurement with the Folin phenol reagent

Author(s): Lowry OH, Rosebrough NJ, Farr AL, Randell RJ

Selenium as an anti-oxidant and pro-oxidant in ryegrass

Author(s): Hartikainen H, Xue T, Piironen V

The importance of selenium biofortification in food crop

Author(s): Garcia-Bañuelos LM, Hermosillo-Cerec MA, Sanchez E

Promotion of growth in mungbean (Phaseolus aureus Roxb

Author(s): Malik JA, Kumar S, Thakur P, Sharma S, Kaur R, et al.

Rice seed invigoration: a review

Author(s): Farooq M, Basra SMA, Wahid A, Khaliq A, Kobayashi N

Seed priming with selenium: Consequences for emergence, seedling growth, and biochemical attributes of rice

Author(s): Abdul Khaliq, Aslam F, Matloob A, Hussain S, Geng M, et al.

Toward a molecular understanding of plant hormone actions

Author(s): Li C, Li J, Chong K, Harter K, Lee Y, et al.

Ameliorative effect of selenium on tomato plants grown under salinity stress

Author(s): Mozafariyan M, Kamelmanesh MM, Hawrylak-Nowak B

Selenium–an antioxidative protectant in soybean during senescence

Author(s): Djanaguiraman M, Devi DD, Shanker AK, Sheeba A, Bangarusamy U

Selenium in medicine and treatment

Author(s): Frączek A, Pasterniak K

Respiratory potential and Se compounds in pea (Pisum sativum L

Author(s): Smrkolj P, Germ M, Kreft I, Stibilj V

Metabolic importance of selenium for plants

Author(s): Germ M, Stibilj V, Kreft I

The Effects of Ascorbic Acid on Breaking the seed dormancy of Malussieversii

Author(s): Niu J,  Zhao L, Fan Y, Shi S, He L, et al.