Exogeneous application of ascorbic acid, salicylic acid and hydrogen peroxide improves the productivity of hybrid maize at low temperature stress

Author(s): Ahmed I, Basra SMA, Wahid A

Abstract

To cite this paper: Ahmad, I., S.M.A. Basra and A. Wahid, 2014. Exogenous application of ascorbic acid, salicylic acid and hydrogen peroxide improves the productivity of hybrid maize under at low temperature stress. Int. Abstract Maize being subtropical crop is sensitive to low temperature at early growth stages. Exogenous application of ascorbic acid (AsA), salicylic acid (SA) and hydrogen peroxide (H 2 O 2) can improve the seedling growth of maize at early growth stages. In these studies, the effect of exogenous application of AsA, SA and H 2 O 2 to improve the maize performance at sub-optimum temperatures was investigated in pots and field experiments.. In pot experiment, AsA, SA and H 2 O 2 were foliage applied at 20 or 40 mg L-1 at 3rd leaf stage. In field experiment, these three substances were applied as seed priming or as foliar spray. In pot experiment, foliar application of AsA, SA and H 2 O 2 at each concentration improved seedling growth, leaf relative water, chlorophyll b contents, membrane stability and enzymatic antioxidant activities in maize. In field experiment, application of these substances either through seed priming or foliar spray improved the morphological, yield related attributes and grain yield of spring maize; however, seed priming was more effective than foliar application. In conclusion, the productivity of hybrid maize can be improved by seed priming with AsA, SA and H 2 O 2 under low temperature stress.

Similar Articles

  Cowpea: Alternative field crops manual

Author(s): Davis DW, Oelke EA, Oplinger ES, Doll JD, Hanson CV, et al.

Cowpea (Vigna unguiculata L

Author(s): Ehlers JD, Hall AE

Cowpea: An overview on its nutritional facts and health benefits

Author(s): Jayathilake C, Visvanathan R, Deen A, Bangamuwage R, Jayawardana BC, et al.

Foliar application of glycinebetaine–A novel product from sugar beet–As an approach to increase tomato yield

Author(s): Makela MP, Jokinen K, Kontturi M, Peltonen-Sainio M, Pehu E, et al.

Nutrient uptake changes in ascorbate free radical-stimulated roots

Author(s): Gonzalez-Reyes JA, Hidalgo A, Caler JA, Palos R, Navas P

Selenium in higher plants: Understanding mechanisms for biofortification and phytoremediaton

Author(s): Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA

Free radical scavenging efficiency of Nano-Se in vitro

Author(s): Huang B, Zhang J, Hou J, Chen C

Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum

Author(s): Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, et al.

on antioxidant enzymes activities, lipid peroxidation and proline accumulation of Canola

Author(s): Dolatabadian A, Sanavy SAMM, Chashmi NA (2008)

Self fruit extract and vitamin-C improves tomato seed germination

Author(s): Barh D, Srivastava HC, Mazumdar BC

 Methods of enzymatic analysis

Author(s): Bergmeyer HU

Protein measurement with the Folin phenol reagent

Author(s): Lowry OH, Rosebrough NJ, Farr AL, Randell RJ

Selenium as an anti-oxidant and pro-oxidant in ryegrass

Author(s): Hartikainen H, Xue T, Piironen V

The importance of selenium biofortification in food crop

Author(s): Garcia-Bañuelos LM, Hermosillo-Cerec MA, Sanchez E

Promotion of growth in mungbean (Phaseolus aureus Roxb

Author(s): Malik JA, Kumar S, Thakur P, Sharma S, Kaur R, et al.

Rice seed invigoration: a review

Author(s): Farooq M, Basra SMA, Wahid A, Khaliq A, Kobayashi N

Seed priming with selenium: Consequences for emergence, seedling growth, and biochemical attributes of rice

Author(s): Abdul Khaliq, Aslam F, Matloob A, Hussain S, Geng M, et al.

Toward a molecular understanding of plant hormone actions

Author(s): Li C, Li J, Chong K, Harter K, Lee Y, et al.

Ameliorative effect of selenium on tomato plants grown under salinity stress

Author(s): Mozafariyan M, Kamelmanesh MM, Hawrylak-Nowak B

Selenium–an antioxidative protectant in soybean during senescence

Author(s): Djanaguiraman M, Devi DD, Shanker AK, Sheeba A, Bangarusamy U

Selenium in medicine and treatment

Author(s): Frączek A, Pasterniak K

Respiratory potential and Se compounds in pea (Pisum sativum L

Author(s): Smrkolj P, Germ M, Kreft I, Stibilj V

Antioxidant systems in sunflower (Helianthus annuus L

Author(s): Bailly C, Benamar A, Corbineau F, Come D

Metabolic importance of selenium for plants

Author(s): Germ M, Stibilj V, Kreft I

The Effects of Ascorbic Acid on Breaking the seed dormancy of Malussieversii

Author(s): Niu J,  Zhao L, Fan Y, Shi S, He L, et al.