Impact of ascorbic acid on growth and some physiological attributes of cucumber (Cucumis sativus) plants under water-deficit conditions

Author(s): Naz H, Akram NA, Ashraf M

Abstract

Cucumber (Cucumis sativus L.) is a very popular vegetable, which is utilized all-over the world. In the current research, two cultivars of cucumber, Local and Hybrid were chosen to look at the effect of foliar-applied ascorbic acid on some key physio-biochemical attributes under varying water regimes. After one week of seed germination, the plants of both cucumber cultivars were subjected to 100% field capacity (control) and 60% field capacity (water deficit conditions. After one month of water stress treatment, ascorbic acid (AsA) at the rate of 0 (control), 50 and 100 mg L-1 was applied foliarly. After 15-day AsA application, the data were recorded which showed that drought stress significantly reduced the plant growth, chlorophyll contents, relative water contents (RWC), rate of photosynthesis (A), stomatal conductance, internal CO2 concentration (Ci) and Ci/Ca, while drought caused an increase in relative membrane permeability (RMP), and proline and glycine betaine contents. AsA improved the shoot fresh and dry weights, chlorophyll a, RWC, Ci, Ci/Ca and proline contents. No change was observed in both cucumber cultivars under water-deficit and AsA treatments. Overall, growth improvement of cucumber plants under dry arid climate could be attributed to AsA-induced stimulation in the chlorophyll a, proline, RWC contents and Ci concentration.

Similar Articles

  Cowpea: Alternative field crops manual

Author(s): Davis DW, Oelke EA, Oplinger ES, Doll JD, Hanson CV, et al.

Cowpea (Vigna unguiculata L

Author(s): Ehlers JD, Hall AE

Cowpea: An overview on its nutritional facts and health benefits

Author(s): Jayathilake C, Visvanathan R, Deen A, Bangamuwage R, Jayawardana BC, et al.

Foliar application of glycinebetaine–A novel product from sugar beet–As an approach to increase tomato yield

Author(s): Makela MP, Jokinen K, Kontturi M, Peltonen-Sainio M, Pehu E, et al.

Nutrient uptake changes in ascorbate free radical-stimulated roots

Author(s): Gonzalez-Reyes JA, Hidalgo A, Caler JA, Palos R, Navas P

Selenium in higher plants: Understanding mechanisms for biofortification and phytoremediaton

Author(s): Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA

Free radical scavenging efficiency of Nano-Se in vitro

Author(s): Huang B, Zhang J, Hou J, Chen C

Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum

Author(s): Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, et al.

on antioxidant enzymes activities, lipid peroxidation and proline accumulation of Canola

Author(s): Dolatabadian A, Sanavy SAMM, Chashmi NA (2008)

Self fruit extract and vitamin-C improves tomato seed germination

Author(s): Barh D, Srivastava HC, Mazumdar BC

 Methods of enzymatic analysis

Author(s): Bergmeyer HU

Protein measurement with the Folin phenol reagent

Author(s): Lowry OH, Rosebrough NJ, Farr AL, Randell RJ

Selenium as an anti-oxidant and pro-oxidant in ryegrass

Author(s): Hartikainen H, Xue T, Piironen V

The importance of selenium biofortification in food crop

Author(s): Garcia-Bañuelos LM, Hermosillo-Cerec MA, Sanchez E

Promotion of growth in mungbean (Phaseolus aureus Roxb

Author(s): Malik JA, Kumar S, Thakur P, Sharma S, Kaur R, et al.

Rice seed invigoration: a review

Author(s): Farooq M, Basra SMA, Wahid A, Khaliq A, Kobayashi N

Seed priming with selenium: Consequences for emergence, seedling growth, and biochemical attributes of rice

Author(s): Abdul Khaliq, Aslam F, Matloob A, Hussain S, Geng M, et al.

Toward a molecular understanding of plant hormone actions

Author(s): Li C, Li J, Chong K, Harter K, Lee Y, et al.

Ameliorative effect of selenium on tomato plants grown under salinity stress

Author(s): Mozafariyan M, Kamelmanesh MM, Hawrylak-Nowak B

Selenium–an antioxidative protectant in soybean during senescence

Author(s): Djanaguiraman M, Devi DD, Shanker AK, Sheeba A, Bangarusamy U

Selenium in medicine and treatment

Author(s): Frączek A, Pasterniak K

Respiratory potential and Se compounds in pea (Pisum sativum L

Author(s): Smrkolj P, Germ M, Kreft I, Stibilj V

Antioxidant systems in sunflower (Helianthus annuus L

Author(s): Bailly C, Benamar A, Corbineau F, Come D

Metabolic importance of selenium for plants

Author(s): Germ M, Stibilj V, Kreft I

The Effects of Ascorbic Acid on Breaking the seed dormancy of Malussieversii

Author(s): Niu J,  Zhao L, Fan Y, Shi S, He L, et al.