Recommended Conferences

PHYSIOTHERAPY 2022

Paris, France
Related Subjects
 

Human movement analysis using stereophotogrammetry

Author(s): Leardini A, Chiari L, Della Croce U, Cappozzo A

Abstract

When using optoelectronic stereophotogrammetry, skin deformation and displacement causes marker movement with respect to the underlying bone. This movement represents an artifact, which affects the estimation of the skeletal system kinematics, and is regarded as the most critical source of error in human movement analysis. A comprehensive review of the state-of-the-art for assessment, minimization and compensation of the soft tissue artifact (STA) is provided. It has been shown that STA is greater than the instrumental error associated with stereophotogrammetry, has a frequency content similar to the actual bone movement, is task dependent and not reproducible among subjects and, of lower limb segments, is greatest at the thigh. It has been shown that in in vivo experiments only motion about the flexion/extension axis of the hip, knees and ankles can be determined reliably. Motion about other axes at those joints should be regarded with much more caution as this artifact produces spurious effects with magnitudes comparable to the amount of motion actually occurring in those joints. Techniques designed to minimize the contribution of and compensate for the effects of this artifact can be divided up into those which model the skin surface and those which include joint motion constraints. Despite the numerous solutions proposed, the objective of reliable estimation of 3D skeletal system kinematics using skin markers has not yet been satisfactorily achieved and greatly limits the contribution of human movement analysis to clinical practice and biomechanical research. For STA to be compensated for effectively, it is here suggested that either its subject-specific pattern is assessed by ad hoc exercises or it is characterized from a large series of measurements on different subject populations. Alternatively, inclusion of joint constraints into a more general STA minimization approach may provide an acceptable solution.

Similar Articles

Studies of human locomotion: past, present and future

Author(s): Andriacchi TP, Alexander EJ

Calibration of the "Flock of Birds" electromagnetic tracking device and its application in shoulder motion studies

Author(s): Meskers CG, Fraterman H, van der Helm FC, Vermeulen HM, Rozing PM

Dynamic measurements of three-dimensional scapular kinematics: a validation study

Author(s): Karduna AR, McClure PW, Michener LA, Sennett B

Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo

Author(s): Benoit DL, Ramsey DK, Lamontagne M, Xu L, Wretenberg P, et al.

Human movement analysis using stereophotogrammetry

Author(s): Della Croce U, Leardini A, Chiari L, Cappozzo A

Human movement analysis using stereophotogrammetry

Author(s): Cappozzo A, Della Croce U, Leardini A, Chiari L

Differences in normal and perturbed walking kinematics between male and female athletes

Author(s): Hurd WJ, Chmielewski TL, Axe MJ, Davis I, Snyder-Mackler L

Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo

Author(s): McClure PW, Michener LA, Sennett BJ, Karduna AR

Evaluation and management of scapular dysfunction

Author(s): McClure P, Greenberg E, Kareha S

Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis

Author(s): Carson MC, Harrington ME, Thompson N, O'Connor JJ, Theologis TN

An anatomically based protocol for the description of foot segment kinematics during gait

Author(s): Leardini A, Benedetti MG, Catani F, Simoncini L, Giannini S

A procedure to validate three-dimensional motion assessment systems

Author(s): DeLuzio KJ, Wyss UP, Li J, Costigan PA

Scapular kinematics during humeral elevation in adults and children

Author(s): Dayanidhi S, Orlin M, Kozin S, Duff S, Karduna A

Test-retest reliability of 3D kinematic gait variables in hip osteoarthritis patients

Author(s): Laroche D, Duval A, Morisset C, Beis JN, d'Athis P, et al.

Anatomy and biomechanics of the shoulder

Author(s): Halder AM, Itoi E, An KN

Shoulder kinematics in subjects with frozen shoulder

Author(s): Rundquist PJ, Anderson DD, Guanche CA, Ludewig PM

Three-dimensional kinematics of the lower limbs in hip osteoarthritis during walking

Author(s): Ornetti P, Laroche D, Morisset C, Beis JN, Tavernier C, et al.

Gait analysis 6 and 12 months after anterior cruciate ligament reconstruction surgery

Author(s): Hooper DM, Morrissey MC, Drechsler WI, Clark NC, Coutts FJ, et al.

Foot kinematics in people with medial compartment knee osteoarthritis

Author(s): Levinger P, Menz HB, Morrow AD, Feller JA, Bartlett JR, et al.

Gender differences in lower extremity mechanics during running

Author(s): Ferber R, Davis IM, Williams DS 3rd

Gait and neuromuscular asymmetries after acute anterior cruciate ligament rupture

Author(s): Gardinier ES, Manal K, Buchanan TS, Snyder-Mackler L

Human movement analysis using stereophotogrammetry

Author(s): Chiari L, Della Croce U, Leardini A, Cappozzo A