Recommended Conferences

PHYSIOTHERAPY 2022

Paris, France
Related Subjects
 

Biomechanics of the knee: methodological considerations in the in vivo kinematic analysis of the tibiofemoral and patellofemoral joint

Author(s): Ramsey DK, Wretenberg PF

Abstract

The purpose of this review article is twofold: to report on the use of intracortical pins to measure three-dimensional tibiofemoral and patellofemoral joint kinematics and highlight methodological concerns associated with this procedure. Tibiofemoral and patellofemoral kinematics has been extensively investigated using reflective markers attached to the surrounding soft tissue of the calf and thigh. However, surface markers may not adequately represent true anatomical locations and skin movement artefacts present the most critical source of measurement error. Consequently, knowledge about skeletal tibiofemoral kinematics is limited, in particular abduction-adduction and internal-external rotations. Considerable questions remain regarding what constitutes normal motion of the knee. A way to avoid the problem of surface markers is use invasive markers to directly measure skeletal motion. To date, many co-ordinate systems have been used to describe three-dimensional skeletal kinematics of the lower limb in vivo. They include helical axes, finite helical axes, instantaneous helical axes, and the joint co-ordinate system based on local anatomic landmarks. Although each method accurately describes the relative motion in 6 d. of f., the differences in how the motion is partitioned may account for the differences across investigations. Additionally, the problem of defining the anatomical co-ordinate system makes comparisons across subjects and studies difficult since subtle differences may be caused by small deviations in the anatomical reference alignment. Cross talk is also a primarily a concern. For joints that articulate principally about one axis, the primary flexion/extension that is registered will be cross-talked into ab/adduction and internal/external rotations.

Similar Articles

Studies of human locomotion: past, present and future

Author(s): Andriacchi TP, Alexander EJ

Calibration of the "Flock of Birds" electromagnetic tracking device and its application in shoulder motion studies

Author(s): Meskers CG, Fraterman H, van der Helm FC, Vermeulen HM, Rozing PM

Dynamic measurements of three-dimensional scapular kinematics: a validation study

Author(s): Karduna AR, McClure PW, Michener LA, Sennett B

Human movement analysis using stereophotogrammetry

Author(s): Leardini A, Chiari L, Della Croce U, Cappozzo A

Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo

Author(s): Benoit DL, Ramsey DK, Lamontagne M, Xu L, Wretenberg P, et al.

Human movement analysis using stereophotogrammetry

Author(s): Della Croce U, Leardini A, Chiari L, Cappozzo A

Human movement analysis using stereophotogrammetry

Author(s): Cappozzo A, Della Croce U, Leardini A, Chiari L

Differences in normal and perturbed walking kinematics between male and female athletes

Author(s): Hurd WJ, Chmielewski TL, Axe MJ, Davis I, Snyder-Mackler L

Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo

Author(s): McClure PW, Michener LA, Sennett BJ, Karduna AR

Evaluation and management of scapular dysfunction

Author(s): McClure P, Greenberg E, Kareha S

Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis

Author(s): Carson MC, Harrington ME, Thompson N, O'Connor JJ, Theologis TN

An anatomically based protocol for the description of foot segment kinematics during gait

Author(s): Leardini A, Benedetti MG, Catani F, Simoncini L, Giannini S

A procedure to validate three-dimensional motion assessment systems

Author(s): DeLuzio KJ, Wyss UP, Li J, Costigan PA

Scapular kinematics during humeral elevation in adults and children

Author(s): Dayanidhi S, Orlin M, Kozin S, Duff S, Karduna A

Test-retest reliability of 3D kinematic gait variables in hip osteoarthritis patients

Author(s): Laroche D, Duval A, Morisset C, Beis JN, d'Athis P, et al.

Anatomy and biomechanics of the shoulder

Author(s): Halder AM, Itoi E, An KN

Shoulder kinematics in subjects with frozen shoulder

Author(s): Rundquist PJ, Anderson DD, Guanche CA, Ludewig PM

Three-dimensional kinematics of the lower limbs in hip osteoarthritis during walking

Author(s): Ornetti P, Laroche D, Morisset C, Beis JN, Tavernier C, et al.

Gait analysis 6 and 12 months after anterior cruciate ligament reconstruction surgery

Author(s): Hooper DM, Morrissey MC, Drechsler WI, Clark NC, Coutts FJ, et al.

Foot kinematics in people with medial compartment knee osteoarthritis

Author(s): Levinger P, Menz HB, Morrow AD, Feller JA, Bartlett JR, et al.

Gender differences in lower extremity mechanics during running

Author(s): Ferber R, Davis IM, Williams DS 3rd

Gait and neuromuscular asymmetries after acute anterior cruciate ligament rupture

Author(s): Gardinier ES, Manal K, Buchanan TS, Snyder-Mackler L

Human movement analysis using stereophotogrammetry

Author(s): Chiari L, Della Croce U, Leardini A, Cappozzo A