Recommended Conferences

REHABILITATION HEALTH 2022

Barcelona, Spain

Physiotherapy 2022

Vancouver, Canada

PHYSICAL MEDICINE 2022

Barcelona, Spain
Related Subjects
 

Gait and neuromuscular asymmetries after acute anterior cruciate ligament rupture

Author(s): Gardinier ES, Manal K, Buchanan TS, Snyder-Mackler L

Abstract

The decreased internal knee extensor moment is a significant gait asymmetry among patients with anterior cruciate ligament (ACL) deficiency, yet the muscular strategy driving this altered moment for the injured limb is unclear.

Purpose: This study aimed to determine whether patients with ACL deficiency and characteristic knee instability would demonstrate normal extensor and increased flexor muscle force to generate a decreased internal extensor moment (i.e., use a hamstring facilitation strategy).

Methods: Gait analysis was performed on 31 athletes with acute ACL rupture who exhibited characteristic knee instability after injury. Peak internal knee extensor moment was calculated using inverse dynamics, and muscle forces were estimated using an electromyography-driven modeling approach. Comparisons were made between the injured and contralateral limbs.

Results: As expected, patients demonstrated decreased peak knee flexion (P = 0.028) and internal knee extensor moment (P = 0.0004) for their injured limb but exhibited neither an isolated decrease in extensor force (quadriceps avoidance) nor an isolated increase in flexor force (hamstring facilitation) at peak knee moment. Instead, they exhibited decreased muscle force from both flexor (P = 0.0001) and extensor (P = 0.0103) groups. This strategy of decreased muscle force may be explained in part by muscle weakness that frequently accompanies ACL injury or by apprehension, low confidence, and fear of further injury.

Conclusions: This is the first study to estimate muscle forces in the ACL-deficient knee using an electromyography-driven approach. These results affirm the existence of neuromuscular asymmetries in the individuals with ACL deficiency and characteristic knee instability.

Similar Articles

Studies of human locomotion: past, present and future

Author(s): Andriacchi TP, Alexander EJ

Calibration of the "Flock of Birds" electromagnetic tracking device and its application in shoulder motion studies

Author(s): Meskers CG, Fraterman H, van der Helm FC, Vermeulen HM, Rozing PM

Dynamic measurements of three-dimensional scapular kinematics: a validation study

Author(s): Karduna AR, McClure PW, Michener LA, Sennett B

Human movement analysis using stereophotogrammetry

Author(s): Leardini A, Chiari L, Della Croce U, Cappozzo A

Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo

Author(s): Benoit DL, Ramsey DK, Lamontagne M, Xu L, Wretenberg P, et al.

Human movement analysis using stereophotogrammetry

Author(s): Della Croce U, Leardini A, Chiari L, Cappozzo A

Human movement analysis using stereophotogrammetry

Author(s): Cappozzo A, Della Croce U, Leardini A, Chiari L

Differences in normal and perturbed walking kinematics between male and female athletes

Author(s): Hurd WJ, Chmielewski TL, Axe MJ, Davis I, Snyder-Mackler L

Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo

Author(s): McClure PW, Michener LA, Sennett BJ, Karduna AR

Evaluation and management of scapular dysfunction

Author(s): McClure P, Greenberg E, Kareha S

Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis

Author(s): Carson MC, Harrington ME, Thompson N, O'Connor JJ, Theologis TN

An anatomically based protocol for the description of foot segment kinematics during gait

Author(s): Leardini A, Benedetti MG, Catani F, Simoncini L, Giannini S

A procedure to validate three-dimensional motion assessment systems

Author(s): DeLuzio KJ, Wyss UP, Li J, Costigan PA

Scapular kinematics during humeral elevation in adults and children

Author(s): Dayanidhi S, Orlin M, Kozin S, Duff S, Karduna A

Test-retest reliability of 3D kinematic gait variables in hip osteoarthritis patients

Author(s): Laroche D, Duval A, Morisset C, Beis JN, d'Athis P, et al.

Anatomy and biomechanics of the shoulder

Author(s): Halder AM, Itoi E, An KN

Shoulder kinematics in subjects with frozen shoulder

Author(s): Rundquist PJ, Anderson DD, Guanche CA, Ludewig PM

Three-dimensional kinematics of the lower limbs in hip osteoarthritis during walking

Author(s): Ornetti P, Laroche D, Morisset C, Beis JN, Tavernier C, et al.

Gait analysis 6 and 12 months after anterior cruciate ligament reconstruction surgery

Author(s): Hooper DM, Morrissey MC, Drechsler WI, Clark NC, Coutts FJ, et al.

Foot kinematics in people with medial compartment knee osteoarthritis

Author(s): Levinger P, Menz HB, Morrow AD, Feller JA, Bartlett JR, et al.

Gender differences in lower extremity mechanics during running

Author(s): Ferber R, Davis IM, Williams DS 3rd

Human movement analysis using stereophotogrammetry

Author(s): Chiari L, Della Croce U, Leardini A, Cappozzo A