Neurotrophic and neurotoxic effects of amyloid beta protein: Reversal by tachykinin neuropeptides

Author(s): Yankner BA, Duffy LK, Kirschner DA

Abstract

The amyloid β protein is deposited in the brains of patients with Alzheimer's disease but its pathogenic role is unknown. In culture, the amyloid β protein was neurotrophic to undifferentiated hippocampal neurons at low concentrations and neurotoxic to mature neurons at higher concentrations. In differentiated neurons, amyloid β protein caused dendritic and axonal retraction followed by neuronal death. A portion of the amyloid β protein (amino acids 25 to 35) mediated both the trophic and toxic effects and was homologous to the tachykinin neuropeptide family. The effects of the amyloid β protein were mimicked by tachykinin antagonists and completely reversed by specific tachykinin agonists. Thus, the amyloid β protein could function as a neurotrophic factor for differentiating neurons, but at high concentrations in mature neurons, as in Alzheimer's disease, could cause neuronal degeneration.

Similar Articles

Alzheimer's disease and the Amyloid-β Peptide

Author(s): Murphy MP, LeVine H

Adrenergic receptors in aging and Alzheimer's disease: Increased β2-Receptors in prefrontal cortex and hippocampus

Author(s): Kalaria RN, Andorn AC, Tabaton M, Whitehouse PJ, Harik SI, et al.

Antihypertensive medication use and risk of cognitive impairment: The Honolulu-Asia Aging Study

Author(s): Gelber RP, Ross GW, Petrovitch H, Masaki KH, Launer LJ, et al.

Antihypertensive medication use and risk of cognitive impairment: The Honolulu-Asia aging study

Author(s): Gelber RP, Ross GW, Petrovitch H, Masaki KH, Launer LJ, et al.

Epac: Defining a new mechanism for cAMP action

Author(s): Gloerich M, Bos JL

G protein beta gamma subunits

Author(s): Clapham DE, Neer EJ

Recombinant G-protein βγ-subunits activate the muscarinic-gated atrial potassium channel

Author(s): Wickman KD, Iniguez-Lluhl JA, Davenport PA, Taussig R, Krapivinsky GB, et al.

G-protein beta Gamma-subunits activate the cardiac muscarinic K+-channel via phospholipase A2

Author(s): Kim D, Lewis DL, Graziadei L, Neer EJ, Bar-Sagi D, et al.

The expanding roles of Gβγ subunits in G Protein-coupled receptor signaling and drug action

Author(s): Khan SM, Sleno R, Gora S, Zylbergold P, Laverdure JP, et al.

Binding of amyloid β peptide to β2 adrenergic receptor induces PKA-dependent AMPA receptor hyperactivity

Author(s): Wang D, Govindaiah G, Liu R, De Arcangelis V, Cox CL, et al.

Alzheimer’s disease

Author(s): Burns A, Iliffe S

Alzheimer's disease

Author(s): Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, et al.

Brain amyloid-β oligomers in ageing and Alzheimer’s disease

Author(s): Lesne SE, Sherman MA, Grant M, Kuskowski M, Schneider JA, et al.

The presence of sodium dodecyl sulphate-stable Aβ dimers is strongly associated with Alzheimer-type dementia

Author(s): Mc Donald JM, Savva GM, Brayne C, Welzel AT, Forster G, et al.

Locus Coeruleus, norepinephrine and Aβ peptides in Alzheimer's disease

Author(s): Ross JA, McGonigle P1, Van Bockstaele EJ

Statistical significance for genomewide studies

Author(s): Storey JD, Tibshirani R

Mechanisms of phagocytosis in macrophages

Author(s): Aderem A, Underhill DM