Binding of amyloid β peptide to β2 adrenergic receptor induces PKA-dependent AMPA receptor hyperactivity

Author(s): Wang D, Govindaiah G, Liu R, De Arcangelis V, Cox CL, et al.

Abstract

Progressive decrease in neuronal function is an established feature of Alzheimer's disease (AD). Previous studies have shown that amyloid beta (Abeta) peptide induces acute increase in spontaneous synaptic activity accompanied by neurotoxicity, and Abeta induces excitotoxic neuronal death by increasing calcium influx mediated by hyperactive alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. An in vivo study has revealed subpopulations of hyperactive neurons near Abeta plaques in mutant amyloid precursor protein (APP)-transgenic animal model of Alzheimer's disease (AD) that can be normalized by an AMPA receptor antagonist. In the present study, we aim to determine whether soluble Abeta acutely induces hyperactivity of AMPA receptors by a mechanism involving beta(2) adrenergic receptor (beta(2)AR). We found that the soluble Abeta binds to beta(2)AR, and the extracellular N terminus of beta(2)AR is critical for the binding. The binding is required to induce G-protein/cAMP/protein kinase A (PKA) signaling, which controls PKA-dependent phosphorylation of GluR1 and beta(2)AR, and AMPA receptor-mediated excitatory postsynaptic currents (EPSCs). beta(2)AR and GluR1 also form a complex comprising postsynaptic density protein 95 (PSD95), PKA and its anchor AKAP150, and protein phosphotase 2A (PP2A). Both the third intracellular (i3) loop and C terminus of beta(2)AR are required for the beta(2)AR/AMPA receptor complex. Abeta acutely induces PKA phosphorylation of GluR1 in the complex without affecting the association between two receptors. The present study reveals that non-neurotransmitter Abeta has a binding capacity to beta(2)AR and induces PKA-dependent hyperactivity in AMPA receptors.

Similar Articles

Alzheimer's disease and the Amyloid-β Peptide

Author(s): Murphy MP, LeVine H

Adrenergic receptors in aging and Alzheimer's disease: Increased β2-Receptors in prefrontal cortex and hippocampus

Author(s): Kalaria RN, Andorn AC, Tabaton M, Whitehouse PJ, Harik SI, et al.

Antihypertensive medication use and risk of cognitive impairment: The Honolulu-Asia Aging Study

Author(s): Gelber RP, Ross GW, Petrovitch H, Masaki KH, Launer LJ, et al.

Antihypertensive medication use and risk of cognitive impairment: The Honolulu-Asia aging study

Author(s): Gelber RP, Ross GW, Petrovitch H, Masaki KH, Launer LJ, et al.

Epac: Defining a new mechanism for cAMP action

Author(s): Gloerich M, Bos JL

G protein beta gamma subunits

Author(s): Clapham DE, Neer EJ

Recombinant G-protein βγ-subunits activate the muscarinic-gated atrial potassium channel

Author(s): Wickman KD, Iniguez-Lluhl JA, Davenport PA, Taussig R, Krapivinsky GB, et al.

G-protein beta Gamma-subunits activate the cardiac muscarinic K+-channel via phospholipase A2

Author(s): Kim D, Lewis DL, Graziadei L, Neer EJ, Bar-Sagi D, et al.

The expanding roles of Gβγ subunits in G Protein-coupled receptor signaling and drug action

Author(s): Khan SM, Sleno R, Gora S, Zylbergold P, Laverdure JP, et al.

Alzheimer’s disease

Author(s): Burns A, Iliffe S

Alzheimer's disease

Author(s): Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, et al.

Brain amyloid-β oligomers in ageing and Alzheimer’s disease

Author(s): Lesne SE, Sherman MA, Grant M, Kuskowski M, Schneider JA, et al.

The presence of sodium dodecyl sulphate-stable Aβ dimers is strongly associated with Alzheimer-type dementia

Author(s): Mc Donald JM, Savva GM, Brayne C, Welzel AT, Forster G, et al.

Locus Coeruleus, norepinephrine and Aβ peptides in Alzheimer's disease

Author(s): Ross JA, McGonigle P1, Van Bockstaele EJ

Statistical significance for genomewide studies

Author(s): Storey JD, Tibshirani R

Mechanisms of phagocytosis in macrophages

Author(s): Aderem A, Underhill DM