G-protein beta Gamma-subunits activate the cardiac muscarinic K+-channel via phospholipase A2

Author(s): Kim D, Lewis DL, Graziadei L, Neer EJ, Bar-Sagi D, et al.

Abstract

Muscarinic receptors of cardiac pacemaker and atrial cells are linked to a potassium channel (IK.Ach) by a pertussis toxin-sensitive GTP-binding protein1,2,3. The dissociation of G-proteins leads to the generation of two potential transducing elements, α-GTP and βγ4–6. IK.ACH is activated by G-protein α- and βγ-subunits applied to the intracellular surface of inside-out patches of membrane7–10. βγ has been shown to activate the membrane-bound enzyme phospholipase A2 in retinal rods11. Arachidonic acid, which is produced from the action of phospholipase A2 on phospholipids, is metabolized to compounds which may act as second messengers regulating ion channels in Aplysia12. Muscarinic receptor activation leads to the generation of arachidonic acid in some cell lines13. We therefore tested the hypothesis that βγ activates IK.ACH by stimulation of phospholipase A2. When patches were first incubated with antibody that blocks phospholipase A2 activity14, or with the lipoxygenase inhibitor, nordihydroguaiaretic acid, βγ failed to activate I K.ACH· Arachidonic acid and several of its metabolites derived from the 5-lipoxygenase pathway, activated the channel. Blockade of the cyclooxygenase pathway did not inhibit arachidonic acid-induced channel activation. We conclude that the βγ-subunit of G-proteins activates IK.ACH by stimulating the production of lipoxygenase-derived second messengers.

Similar Articles

Alzheimer's disease and the Amyloid-β Peptide

Author(s): Murphy MP, LeVine H

Adrenergic receptors in aging and Alzheimer's disease: Increased β2-Receptors in prefrontal cortex and hippocampus

Author(s): Kalaria RN, Andorn AC, Tabaton M, Whitehouse PJ, Harik SI, et al.

Antihypertensive medication use and risk of cognitive impairment: The Honolulu-Asia Aging Study

Author(s): Gelber RP, Ross GW, Petrovitch H, Masaki KH, Launer LJ, et al.

Antihypertensive medication use and risk of cognitive impairment: The Honolulu-Asia aging study

Author(s): Gelber RP, Ross GW, Petrovitch H, Masaki KH, Launer LJ, et al.

Epac: Defining a new mechanism for cAMP action

Author(s): Gloerich M, Bos JL

G protein beta gamma subunits

Author(s): Clapham DE, Neer EJ

Recombinant G-protein βγ-subunits activate the muscarinic-gated atrial potassium channel

Author(s): Wickman KD, Iniguez-Lluhl JA, Davenport PA, Taussig R, Krapivinsky GB, et al.

The expanding roles of Gβγ subunits in G Protein-coupled receptor signaling and drug action

Author(s): Khan SM, Sleno R, Gora S, Zylbergold P, Laverdure JP, et al.

Binding of amyloid β peptide to β2 adrenergic receptor induces PKA-dependent AMPA receptor hyperactivity

Author(s): Wang D, Govindaiah G, Liu R, De Arcangelis V, Cox CL, et al.

Alzheimer’s disease

Author(s): Burns A, Iliffe S

Alzheimer's disease

Author(s): Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, et al.

Brain amyloid-β oligomers in ageing and Alzheimer’s disease

Author(s): Lesne SE, Sherman MA, Grant M, Kuskowski M, Schneider JA, et al.

The presence of sodium dodecyl sulphate-stable Aβ dimers is strongly associated with Alzheimer-type dementia

Author(s): Mc Donald JM, Savva GM, Brayne C, Welzel AT, Forster G, et al.

Locus Coeruleus, norepinephrine and Aβ peptides in Alzheimer's disease

Author(s): Ross JA, McGonigle P1, Van Bockstaele EJ

Statistical significance for genomewide studies

Author(s): Storey JD, Tibshirani R

Mechanisms of phagocytosis in macrophages

Author(s): Aderem A, Underhill DM