Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice

Author(s): Chanda N, Kan P, Watkinson LD, Shukla R, Zambre A, et al.

Abstract

Biocompatibility studies and cancer therapeutic applications of nanoparticulate beta-emitting gold-198 (198Au; beta(max) = 0.96 MeV; half-life of 2.7 days) are described. Gum arabic glycoprotein (GA)-functionalized gold nanoparticles (AuNPs) possess optimum sizes (12-18 nm core diameter and 85 nm hydrodynamic diameter) to target individual tumor cells and penetrate through tumor vasculature and pores. We report the results of detailed in vivo therapeutic investigations demonstrating the high tumor affinity of GA-198AuNPs in severely compromised immunodeficient (SCID) mice bearing human prostate tumor xenografts. Intratumoral administration of a single dose of beta-emitting GA-198AuNPs (70 Gy) resulted in clinically significant tumor regression and effective control in the growth of prostate tumors over 30 days. Three weeks after administration of GA-198AuNPs, tumor volumes for the treated animals were 82% smaller as compared with tumor volume of control group. The treatment group showed only transitory weight loss in sharp contrast to the tumor-bearing control group, which underwent substantial weight loss. Pharmacokinetic studies have provided unequivocal evidence for the optimum retention of therapeutic payload of GA-198AuNPs within the tumor site throughout the treatment regimen with minimal or no leakage of radioactivity to various nontarget organs. The measurements of white and red blood cells, platelets, and lymphocytes within the treatment group resembled those of the normal SCID mice, thus providing further evidence on the therapeutic efficacy and concomitant in vivo tolerance and nontoxic features of GA-198AuNPs.

From the clinical editor: In this study, the biocompatibility and cancer therapeutic applications of glycoprotein (GA) functionalized gold nanoparticles containing b-emitting Au-198 are described in SCID mice bearing human prostate tumor xenografts. The findings of significant therapeutic efficacy, good in vivo tolerance and non-toxic features make these particles ideal candidates for future human applications.

Similar Articles

Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma

Author(s): Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, et al.

Survival and prognosis of patients with astrocytoma with atypical or anaplastic features

Author(s): Nelson D, Nelson J, Davis D, Chang C, Griffins T, et al.

Radium-223 in the treatment of osteoblastic metastases: a critical clinical review

Author(s): Humm JL, Sartor O, Parker C, Bruland OS, Macklis R

Alpha emitter radium-223 and survival in metastatic prostate cancer

Author(s): Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, et al.

Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis

Author(s): Bhattacharyya S, Bhattacharya R, Curley S, McNiven MA, Mukherjee P

Effect of nanoparticle surface charge at the plasma membrane and beyond

Author(s): Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, et al.

Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles

Author(s): Arvizo RR, Miranda OR, Moyano DF, Walden CA, Giri K, et al.

Switching the Targeting Pathways of a Therapeutic Antibody by Nanodesign

Author(s): Bhattacharyya S, Singh RD, Pagano R, Robertson JD, Bhattacharya R, et al.

Evaluation of 225Ac for vascular targeted radioimmunotherapy of lung tumors

Author(s): Kennel SJ, Chappell LL, Dadachova K, Brechbiel MW, Lankford TK, et al.

LnPO4 nanoparticles doped with Ac-225 and sequestered daughters for targeted alpha therapy

Author(s): McLaughlin MF, Robertson D, Pevsner PH, Wall JS, Mirzadeh S, et al.

LaPO4 Nanoparticles Doped with Actinium-225 that Partially Sequester Daughter Radionuclides

Author(s): Woodward J, Kennel SJ, Stuckey A, Osborne D, Wall J, et al.

Gold Coated Lanthanide Phosphate Nanoparticles for Targeted Alpha Generator Radiotherapy

Author(s): McLaughlin MF, Woodward J, Boll RA, Wall JS, Rondinone AJ, et al.

Bioelectric effects of intense ultrashort pulses

Author(s): Joshi RP, Schoenbach KH

Nanosecond pulsed electric field thresholds for nanopore formation in neural cells

Author(s): Roth CC, Tolstykh GP, Payne JA, Kuipers MA, Thompson GL