Nanoparticulate systems for brain delivery of drugs

Author(s): Kreuter J.

Abstract

The blood--brain barrier (BBB) represents an insurmountable obstacle for a large number of drugs, including antibiotics, antineoplastic agents, and a variety of central nervous system (CNS)-active drugs, especially neuropeptides. One of the possibilities to overcome this barrier is a drug delivery to the brain using nanoparticles. Drugs that have successfully been transported into the brain using this carrier include the hexapeptide dalargin, the dipeptide kytorphin, loperamide, tubocurarine, the NMDA receptor antagonist MRZ 2/576, and doxorubicin. The nanoparticles may be especially helpful for the treatment of the disseminated and very aggressive brain tumors. Intravenously injected doxorubicin-loaded polysorbate 80-coated nanoparticles were able to lead to a 40% cure in rats with intracranially transplanted glioblastomas 101/8. The mechanism of the nanoparticle-mediated transport of the drugs across the blood-brain barrier at present is not fully elucidated. The most likely mechanism is endocytosis by the endothelial cells lining the brain blood capillaries. Nanoparticle-mediated drug transport to the brain depends on the overcoating of the particles with polysorbates, especially polysorbate 80. Overcoating with these materials seems to lead to the adsorption of apolipoprotein E from blood plasma onto the nanoparticle surface. The particles then seem to mimic low density lipoprotein (LDL) particles and could interact with the LDL receptor leading to their uptake by the endothelial cells. After this the drug may be released in these cells and diffuse into the brain interior or the particles may be transcytosed. Other processes such as tight junction modulation or P-glycoprotein (Pgp) inhibition also may occur. Moreover, these mechanisms may run in parallel or may be cooperative thus enabling a drug delivery to the brain.

Similar Articles

Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma

Author(s): Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, et al.

Survival and prognosis of patients with astrocytoma with atypical or anaplastic features

Author(s): Nelson D, Nelson J, Davis D, Chang C, Griffins T, et al.

Radium-223 in the treatment of osteoblastic metastases: a critical clinical review

Author(s): Humm JL, Sartor O, Parker C, Bruland OS, Macklis R

Alpha emitter radium-223 and survival in metastatic prostate cancer

Author(s): Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, et al.

Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis

Author(s): Bhattacharyya S, Bhattacharya R, Curley S, McNiven MA, Mukherjee P

Effect of nanoparticle surface charge at the plasma membrane and beyond

Author(s): Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, et al.

Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles

Author(s): Arvizo RR, Miranda OR, Moyano DF, Walden CA, Giri K, et al.

Switching the Targeting Pathways of a Therapeutic Antibody by Nanodesign

Author(s): Bhattacharyya S, Singh RD, Pagano R, Robertson JD, Bhattacharya R, et al.

Evaluation of 225Ac for vascular targeted radioimmunotherapy of lung tumors

Author(s): Kennel SJ, Chappell LL, Dadachova K, Brechbiel MW, Lankford TK, et al.

LnPO4 nanoparticles doped with Ac-225 and sequestered daughters for targeted alpha therapy

Author(s): McLaughlin MF, Robertson D, Pevsner PH, Wall JS, Mirzadeh S, et al.

LaPO4 Nanoparticles Doped with Actinium-225 that Partially Sequester Daughter Radionuclides

Author(s): Woodward J, Kennel SJ, Stuckey A, Osborne D, Wall J, et al.

Gold Coated Lanthanide Phosphate Nanoparticles for Targeted Alpha Generator Radiotherapy

Author(s): McLaughlin MF, Woodward J, Boll RA, Wall JS, Rondinone AJ, et al.

Bioelectric effects of intense ultrashort pulses

Author(s): Joshi RP, Schoenbach KH

Nanosecond pulsed electric field thresholds for nanopore formation in neural cells

Author(s): Roth CC, Tolstykh GP, Payne JA, Kuipers MA, Thompson GL