Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis

Author(s): Bhattacharyya S, Bhattacharya R, Curley S, McNiven MA, Mukherjee P

Abstract

Treatment with monoclonal antibody (mAbs) is a viable therapeutic option in cancer. Recently, these mAbs such as cetuximab, herceptin, etc., have been used as targeting agents to selectively deliver chemotherapeutics to cancerous cells. However, mechanisms of nanoparticles-mAbs interactions with the target cells and its effect on intracellular trafficking and mechanism are currently unknown. In this paper, we demonstrate that the distinct patterning and dynamics of anti-EGFR (epidermal growth factor receptor) antibody cetuximab (C225)- induced EGFR internalization in pancreatic cancer cells with variable receptor expression is altered upon nanoconjugation. Nanoconjugation uniformly enhanced C225-induced EGFR endocytosis in PANC-1, AsPC-1, and MiaPaca-2 cells, influenced its compartmentalization and regulated the involvement of dynamin-2 in the endocytic processes. Receptor endocytosis and its intracellular trafficking were monitored by confocal microscopy and transmission electron microscopy. The role of dynamin-2 in EGFR endocytosis was determined after overexpressing either wild-type dynamin-2 or mutant dynamin-2 in pancreatic cancer cells followed by tracking the receptor-antibody complex internalization by confocal microscopy. Significantly, these findings demonstrate that the nanoconjugation cannot be construed as an innocuous reaction involved in attaching the targeting agent to the nanoparticle, instead it may distinctly alter the cellular processes at the molecular level, at least antibody induced receptor endocytosis. This information is critical for successful design of a nanoparticle-based targeted drug delivery system for future clinical translation.

Similar Articles

Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma

Author(s): Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, et al.

Survival and prognosis of patients with astrocytoma with atypical or anaplastic features

Author(s): Nelson D, Nelson J, Davis D, Chang C, Griffins T, et al.

Radium-223 in the treatment of osteoblastic metastases: a critical clinical review

Author(s): Humm JL, Sartor O, Parker C, Bruland OS, Macklis R

Alpha emitter radium-223 and survival in metastatic prostate cancer

Author(s): Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, et al.

Effect of nanoparticle surface charge at the plasma membrane and beyond

Author(s): Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, et al.

Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles

Author(s): Arvizo RR, Miranda OR, Moyano DF, Walden CA, Giri K, et al.

Switching the Targeting Pathways of a Therapeutic Antibody by Nanodesign

Author(s): Bhattacharyya S, Singh RD, Pagano R, Robertson JD, Bhattacharya R, et al.

Evaluation of 225Ac for vascular targeted radioimmunotherapy of lung tumors

Author(s): Kennel SJ, Chappell LL, Dadachova K, Brechbiel MW, Lankford TK, et al.

LnPO4 nanoparticles doped with Ac-225 and sequestered daughters for targeted alpha therapy

Author(s): McLaughlin MF, Robertson D, Pevsner PH, Wall JS, Mirzadeh S, et al.

LaPO4 Nanoparticles Doped with Actinium-225 that Partially Sequester Daughter Radionuclides

Author(s): Woodward J, Kennel SJ, Stuckey A, Osborne D, Wall J, et al.

Gold Coated Lanthanide Phosphate Nanoparticles for Targeted Alpha Generator Radiotherapy

Author(s): McLaughlin MF, Woodward J, Boll RA, Wall JS, Rondinone AJ, et al.

Bioelectric effects of intense ultrashort pulses

Author(s): Joshi RP, Schoenbach KH

Nanosecond pulsed electric field thresholds for nanopore formation in neural cells

Author(s): Roth CC, Tolstykh GP, Payne JA, Kuipers MA, Thompson GL