Pure carbon nanoscale devices: Nanotube heterojunctions

Author(s): Chico L, Crespi VH, Benedict LX, Louie SG, Cohen ML

Abstract

Introduction of pentagon-heptagon pair defects into the hexagonal network of a single carbon nanotube can change the helicity of the tube and alter its electronic structure. Using a tight-binding method to calculate the electronic structure of such systems we show that they behave as nanoscale metal/semiconductor or semiconductor/semiconductor junctions. These junctions could be the building blocks of nanoscale electronic devices made entirely of carbon.

Similar Articles

Electronic and transport properties of nanotubes

Author(s): Charlier JC , Blasé X, Roch S

Friedel-like oscillations in carbon nanotube quantum dots

Author(s): Ayuela A, Jaskólski W, Pelc M, Santos H, Chico L

Carbon nanotube superlattices in a magnetic field

Author(s): Jaskólski W, Pelc M

Atomically resolved single-walled carbon nanotube intramolecular junctions

Author(s): Ouyang M, Huang JL, Cheung CL, Lieber CM

Ab initio structural, elastic, and vibrational properties of carbon nanotubes

Author(s): Sánchez-Portal D, Artacho E, Soler JM, Rubio A, Ordejón P

A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons

Author(s): Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, et al.

Structure and Strength of Carbon Nanohorns

Author(s): Kumar D, Verma V, Dharamvir K, Bhatti HS

Elastic Moduli of Carbon Nanohorns

Author(s): Kumar D, Verma V, Bhatti HS, Dharamvir K

Phonon dispersions in graphene sheet and single-walled carbon nanotubes

Author(s): Kumar D, Verma V, Bhatti HS, Dharamvir K