Investigation into the mechanical properties of single-walled carbon nanotube heterojunctions

Author(s): Lee WJ, Su WS

Abstract

The mechanical properties of finite-length (6,0)/(8,0) single-walled carbon nanotube (SWCNT) heterojunctions with respect to different kinds of connection segments, either coaxial or bias, are investigated using molecular dynamics simulation calculations. It is found that the resulting significant deformation of structure and significant drop of stress under yielding strain is due to the strain localization. Moreover, the deformation is occurred below the heptagon ring in the thinner segment of the heterojunctions under tension at different temperatures, whereas under compression it occurs on the heptagon ring. The computed atomic bond number distribution and radius distribution function are applied to determine the deformed atomic structure. Finally, with increasing temperature, the yielding stresses decrease for both coaxial and bias heterojunctions under tension and compression, while the dependence of temperature on the Young's modulus of the heterojunctions is only observed in the case of tension.

Similar Articles

Electronic and transport properties of nanotubes

Author(s): Charlier JC , Blasé X, Roch S

Friedel-like oscillations in carbon nanotube quantum dots

Author(s): Ayuela A, Jaskólski W, Pelc M, Santos H, Chico L

Carbon nanotube superlattices in a magnetic field

Author(s): Jaskólski W, Pelc M

Atomically resolved single-walled carbon nanotube intramolecular junctions

Author(s): Ouyang M, Huang JL, Cheung CL, Lieber CM

Pure carbon nanoscale devices: Nanotube heterojunctions

Author(s): Chico L, Crespi VH, Benedict LX, Louie SG, Cohen ML

Ab initio structural, elastic, and vibrational properties of carbon nanotubes

Author(s): Sánchez-Portal D, Artacho E, Soler JM, Rubio A, Ordejón P

A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons

Author(s): Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, et al.

Structure and Strength of Carbon Nanohorns

Author(s): Kumar D, Verma V, Dharamvir K, Bhatti HS

Elastic Moduli of Carbon Nanohorns

Author(s): Kumar D, Verma V, Bhatti HS, Dharamvir K

Phonon dispersions in graphene sheet and single-walled carbon nanotubes

Author(s): Kumar D, Verma V, Bhatti HS, Dharamvir K