Empirical interatomic potential for carbon, with application to amorphous carbon

Author(s): Tersoff J

Abstract

An empirical interatomic potential is introduced, which gives a convenient and relatively accurate description of the structural properties and energetics of carbon, including elastic properties, phonons, polytypes, and defects and migration barriers in diamond and graphite. The potential is applied to study amorphous carbon formed in three different ways. Two resulting structures are similar to experimental a−C, but another more diamondlike form has essentially identical energy. The liquid is also found to have unexpected properties.

Similar Articles

Electronic and transport properties of nanotubes

Author(s): Charlier JC , Blasé X, Roch S

Friedel-like oscillations in carbon nanotube quantum dots

Author(s): Ayuela A, Jaskólski W, Pelc M, Santos H, Chico L

Carbon nanotube superlattices in a magnetic field

Author(s): Jaskólski W, Pelc M

Atomically resolved single-walled carbon nanotube intramolecular junctions

Author(s): Ouyang M, Huang JL, Cheung CL, Lieber CM

Pure carbon nanoscale devices: Nanotube heterojunctions

Author(s): Chico L, Crespi VH, Benedict LX, Louie SG, Cohen ML

Ab initio structural, elastic, and vibrational properties of carbon nanotubes

Author(s): Sánchez-Portal D, Artacho E, Soler JM, Rubio A, Ordejón P

A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons

Author(s): Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, et al.

Structure and Strength of Carbon Nanohorns

Author(s): Kumar D, Verma V, Dharamvir K, Bhatti HS

Elastic Moduli of Carbon Nanohorns

Author(s): Kumar D, Verma V, Bhatti HS, Dharamvir K

Phonon dispersions in graphene sheet and single-walled carbon nanotubes

Author(s): Kumar D, Verma V, Bhatti HS, Dharamvir K