Genetic components of the circadian clock regulatethrombogenesis in vivo

Author(s): Westgate EJ, Cheng Y, Reilly DF, Price TS, Walisser JA, et al.

Abstract

Background: Myocardial infarction, stroke, and sudden death undergo diurnal variation. Although genes relevant to hemostasis and vascular integrity undergo circadian oscillation, the role of the molecular clock in thrombotic events remains to be established.

Methods and results: A diurnal variation in the time to thrombotic vascular occlusion (TTVO) subsequent to a photochemical injury was observed in wild-type mice: TTVO varied from 24.6+/-2.7 minutes at zeitgeber time (ZT) 2 to 40.3+/-4.3 minutes at ZT8, 24.3+/-2.3 minutes at ZT14, and 31.0+/-4.4 minutes at ZT20. This pattern was disrupted or altered when core clock genes-BMAL1, CLOCK, and NPAS2-were mutated or deleted. Mutation of CLOCK abolished the diurnal variation in TTVO, whereas deletion of NPAS2 altered its temporal pattern. NPAS2 deletion prolonged TTVO and reduced blood pressure irrespective of clock time. Global BMAL1 deletion shortened TTVO at ZT8, and the diurnal variation in TTVO, but not in systemic blood pressure, was disrupted in mice in which BMAL1 had been selectively deleted in endothelium.

Conclusions: Key components of the molecular clock regulate the response to a thrombogenic stimulus in vivo. Such a phenomenon may interact with environmental variables, and together with the influence of these genes on blood pressure may contribute to the diurnal variation in cardiovascular events observed in humans.

Similar Articles

Rapid resetting of the mammalian circadian clock

Author(s): Best JD, Maywood ES, Smith KL, Hastings MH

Entrainment of the circadian clock in the liver by feeding

Author(s): Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M

Interacting molecular loops in the mammalian circadian clock

Author(s): Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, et al.

Coordinated transcription of key pathways in the mouse by the circadian clock

Author(s): Panda S, Antoch MP, Miller BH, Su AI, Schook AB, et al.

Diurnal variation of and activity during the onset of stroke

Author(s): Tsementzis SA, Gill JS, Hitchcock ER, Gill SK, Beevers DG

Nonuniform nighttime distribution of acute cardiac events: a possible effect of sleep states

Author(s): Lavery CE, Mittleman MA, Cohen MC, Muller JE, Verrier RL

Circadian variation in stroke onset: identical temporal pattern in ischemic and hemorrhagic events

Author(s): Manfredini R, Boari B, Smolensky MH, Salmi R, la Cecilia O, et al.

Vascular disease in mice with a dysfunctional circadian clock

Author(s): Anea CB, Zhang M, Stepp DW, Simkins GB, Reed G, et al.

Circadian rhythm in acute stroke

Author(s): Pardiwalla FK, Yeolekar ME, Bakshi SK

Patient demographic and clinical features and circadian variation in onset of ischemic stroke

Author(s): Casetta I, Granieri E, Fallica E, la Cecilia O, Paolino E, et al.

Circadian variation in the frequency of ischemic stroke

Author(s): Argentino C, Toni D, Rasura M, Violi F, Sacchetti ML, et al.

Circadian variation in onset of acute ischemic stroke

Author(s): Marsh EE 3rd, Biller J, Adams HP Jr, Marler JR, Hulbert JR, et al.

Circadian variation in ischemic stroke subtypes

Author(s): Chaturvedi S, Adams HP Jr, Woolson RF

Morning increase in onset of ischemic stroke

Author(s): Marler JR, Price TR, Clark GL, Muller JE, Robertson T, et al.

Primary intracerebral hemorrhage during asleep period

Author(s): Nagakane Y, Miyashita K, Nagatsuka K, Yamawaki T, Naritomi H

Demographic, circadian, and climatic factors in non-aneurysmal versus aneursymal subarachnoid hemorrhage

Author(s): Miranpuri AS, Aktüre E, Baggott CD, Miranpuri A, Uluç K, et al.

Circadian variation in ictus of aneurysmal subarachnoid hemorrhage

Author(s): Temes RE, Bleck T, Dugar S, Ouyang B, Mohammad Y, et al.

Temporal patterns of stroke onset

Author(s): Kelly-Hayes M, Wolf PA, Kase CS, Brand FN, McGuirk JM, et al.

Circadian and seasonal occurrence of subarachnoid and intracerebral hemorrhage

Author(s): Nyquist PA, Brown RD Jr, Wiebers DO, Crowson CS, O'Fallon WM

Primary intracerebral and aneurysmal subarachnoid hemorrhage in Izumo City, Japan

Author(s): Inagawa T, Takechi A, Yahara K, Saito J, Moritake K, et al.

Effects of meteorological factors on the onset of subarachnoid hemorrhage: a time-series analysis

Author(s): Abe T, Ohde S, Ishimatsu S, Ogata H, Hasegawa T, et al.

Morning increase in platelet aggregability

Author(s): Brezinski DA, Tofler GH, Muller JE, Pohjola-Sintonen S, Willich SN, et al.

Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death

Author(s): Tofler GH, Brezinski D, Schafer AI, Czeisler CA, Rutherford JD, et al.

Loss of circadian rhythm of blood pressure following acute stroke

Author(s): Jain S, Namboodri KK, Kumari S, Prabhakar S

High proportion of lacunar strokes at night: the Bergen stroke study

Author(s): Naess H, Idicula T, Brogger J, Waje-Andreassen U, Thomassen L

Diurnal and seasonal variation of stroke incidence in patients with cardioembolic stroke due to atrial fibrillation

Author(s): Spengos K, Vemmos K, Tsivgoulis G, Manios E, Zakopoulos N, et al.

Newly diagnosed atrial fibrillation linked to wake-up stroke and TIA: hypothetical implications

Author(s): Riccio PM, Klein FR, PaganiCassará F, Muñoz Giacomelli F, González Toledo ME, et al.

Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein

Author(s): Yagita K, Tamanini F, Yasuda M, Hoeijmakers JH, van der Horst GT, et al.