Circadian variation in vascular tone and its relation to alpha-sympathetic vasoconstrictor activity

Author(s): Panza JA, Epstein SE, Quyyumi AA

Abstract

Background: The frequency of several cardiovascular events, such as myocardial infarction, sudden death, and stroke, is increased during the early morning hours. There is also a similar circadian pattern in several physiologic variables, including blood pressure, suggesting that certain dynamic processes may contribute to the circadian distribution and onset of acute events.

Methods: To determine whether there are circadian variations in vascular tone and to investigate their underlying mechanisms, we measured blood flow and vascular resistance in the forearm and their responses to phentolamine (an alpha-adrenergic-antagonist drug) and sodium nitroprusside (a direct vasodilator) in 12 normal subjects (7 men and 5 women; mean age [+/- SD], 44 +/- 9 years) at three different times of day (7 a.m., 2. p.m., and 9 p.m.). The drugs were infused into the brachial artery, and the responses were measured by strain-gauge plethysmography.

Results: The basal forearm vascular resistance was significantly higher, and the blood flow significantly lower, in the morning than in the afternoon and evening (mean vascular resistance, 31 +/- 8, 25 +/- 6, and 22 +/- 7 mm Hg per milliliter per minute per 100 ml of forearm volume, respectively; P less than 0.01). The vasodilator effect of phentolamine was also significantly greater in the morning (mean decrease in vascular resistance, 38 +/- 6 percent) than in the afternoon (26 +/- 6 percent) and evening (21 +/- 7 percent) (P less than 0.05). Consequently, there was no circadian variation in vascular resistance or blood flow after the infusion of this drug. In contrast, the vasodilation in response to sodium nitroprusside was similar at all three times of day.

Conclusions: There is a circadian rhythm in basal vascular tone, due either partly or entirely to increased alpha-sympathetic vasoconstrictor activity during the morning. This variation may contribute to higher blood pressure and the increased incidence of cardiovascular events at this time of day.

Similar Articles

Rapid resetting of the mammalian circadian clock

Author(s): Best JD, Maywood ES, Smith KL, Hastings MH

Entrainment of the circadian clock in the liver by feeding

Author(s): Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M

Interacting molecular loops in the mammalian circadian clock

Author(s): Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, et al.

Coordinated transcription of key pathways in the mouse by the circadian clock

Author(s): Panda S, Antoch MP, Miller BH, Su AI, Schook AB, et al.

Diurnal variation of and activity during the onset of stroke

Author(s): Tsementzis SA, Gill JS, Hitchcock ER, Gill SK, Beevers DG

Nonuniform nighttime distribution of acute cardiac events: a possible effect of sleep states

Author(s): Lavery CE, Mittleman MA, Cohen MC, Muller JE, Verrier RL

Circadian variation in stroke onset: identical temporal pattern in ischemic and hemorrhagic events

Author(s): Manfredini R, Boari B, Smolensky MH, Salmi R, la Cecilia O, et al.

Genetic components of the circadian clock regulatethrombogenesis in vivo

Author(s): Westgate EJ, Cheng Y, Reilly DF, Price TS, Walisser JA, et al.

Vascular disease in mice with a dysfunctional circadian clock

Author(s): Anea CB, Zhang M, Stepp DW, Simkins GB, Reed G, et al.

Circadian rhythm in acute stroke

Author(s): Pardiwalla FK, Yeolekar ME, Bakshi SK

Patient demographic and clinical features and circadian variation in onset of ischemic stroke

Author(s): Casetta I, Granieri E, Fallica E, la Cecilia O, Paolino E, et al.

Circadian variation in the frequency of ischemic stroke

Author(s): Argentino C, Toni D, Rasura M, Violi F, Sacchetti ML, et al.

Circadian variation in onset of acute ischemic stroke

Author(s): Marsh EE 3rd, Biller J, Adams HP Jr, Marler JR, Hulbert JR, et al.

Circadian variation in ischemic stroke subtypes

Author(s): Chaturvedi S, Adams HP Jr, Woolson RF

Morning increase in onset of ischemic stroke

Author(s): Marler JR, Price TR, Clark GL, Muller JE, Robertson T, et al.

Primary intracerebral hemorrhage during asleep period

Author(s): Nagakane Y, Miyashita K, Nagatsuka K, Yamawaki T, Naritomi H

Demographic, circadian, and climatic factors in non-aneurysmal versus aneursymal subarachnoid hemorrhage

Author(s): Miranpuri AS, Aktüre E, Baggott CD, Miranpuri A, Uluç K, et al.

Circadian variation in ictus of aneurysmal subarachnoid hemorrhage

Author(s): Temes RE, Bleck T, Dugar S, Ouyang B, Mohammad Y, et al.

Temporal patterns of stroke onset

Author(s): Kelly-Hayes M, Wolf PA, Kase CS, Brand FN, McGuirk JM, et al.

Circadian and seasonal occurrence of subarachnoid and intracerebral hemorrhage

Author(s): Nyquist PA, Brown RD Jr, Wiebers DO, Crowson CS, O'Fallon WM

Primary intracerebral and aneurysmal subarachnoid hemorrhage in Izumo City, Japan

Author(s): Inagawa T, Takechi A, Yahara K, Saito J, Moritake K, et al.

Effects of meteorological factors on the onset of subarachnoid hemorrhage: a time-series analysis

Author(s): Abe T, Ohde S, Ishimatsu S, Ogata H, Hasegawa T, et al.

Morning increase in platelet aggregability

Author(s): Brezinski DA, Tofler GH, Muller JE, Pohjola-Sintonen S, Willich SN, et al.

Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death

Author(s): Tofler GH, Brezinski D, Schafer AI, Czeisler CA, Rutherford JD, et al.

Loss of circadian rhythm of blood pressure following acute stroke

Author(s): Jain S, Namboodri KK, Kumari S, Prabhakar S

High proportion of lacunar strokes at night: the Bergen stroke study

Author(s): Naess H, Idicula T, Brogger J, Waje-Andreassen U, Thomassen L

Diurnal and seasonal variation of stroke incidence in patients with cardioembolic stroke due to atrial fibrillation

Author(s): Spengos K, Vemmos K, Tsivgoulis G, Manios E, Zakopoulos N, et al.

Newly diagnosed atrial fibrillation linked to wake-up stroke and TIA: hypothetical implications

Author(s): Riccio PM, Klein FR, PaganiCassará F, Muñoz Giacomelli F, González Toledo ME, et al.

Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein

Author(s): Yagita K, Tamanini F, Yasuda M, Hoeijmakers JH, van der Horst GT, et al.