An in vitro and in vivo bio-interaction responses and biosafety evaluation of novel Au–ZnTe core–shell nanoparticles

Author(s): Dunpall R, Revaprasadu N

Abstract

Novel gold–zinc telluride (Au–ZnTe) core–shell nanoparticles were synthesized to support surface modifications for enhanced drug delivery in cancer therapeutics. Knowledge of the biosafety and biocompatibility properties of these materials within biological systems is very limited and needs to be evaluated before their potential bio-applications may be demonstrated. We report the in vitro and in vivo bio-interactions of the Au–ZnTe nanoparticles, which were exposed to various human cancer and healthy cells, an in vitro immune simulation using peripheral blood mononuclear cells, followed by the analysis of cytokine expression. Acute in vivo exposure studies using low (50 μg ml−1), intermediate (500 μg ml−1) and high (1500 μg ml−1) concentrations of the Au–ZnTe particles were used to investigate histopathological effects in rats. Normal human mammary epithelial and colon cells in addition to human breast, prostate and colon cancer cells displayed cell viability between 86.4 ± 7.4% and 99.0 ± 3.6% when co-cultured with core–shell nanoparticles for 48 hours. Acute exposure studies using rat models displayed no significant changes in full blood counts, liver and kidney enzyme regulation and histopathology. These findings confirmed that Au–ZnTe core–shell nanoparticles display biosafety and biocompatibility features which can be exploited in future bio-applications.

Similar Articles

Hallmarks of cancer: the next generation

Author(s): Hanahan D, Weinberg RA

Side effects of chemotherapy

Author(s): Burstein HJ

Therapeutic nanoparticles for drug delivery in cancer

Author(s): Cho K, Wang X, Nie S, Chen ZG, Shin DM

Synthesis of biocompatible Au–ZnTe core–shell nanoparticles

Author(s): Dunpall R, Lewis EA, Haigh SJ, O'Brien P, Revaprasadu N

Nanomaterial cytotoxicity is composition, size, and cell type dependent

Author(s): Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L

Nanoparticle and targeted systems for cancer therapy

Author(s): Brannon-Peppas L, Blanchette JO

Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform

Author(s): Mandal B, Bhattacharjee H, Mittal N, Sah H, Balabathula P,et al.