Patch-level based vegetation change and environmental drivers in Tarim River drainage area of West China

Author(s): Kong W, Sun OJ, Chen Y, Yu Y, Tian Z

Abstract

Information on vegetation-related land cover change and the principle drivers is critical for environmental management and assessment of desertification processes in arid environments. In this study, we investigated patch-level based changes in vegetation and other major land cover types in lower Tarim River drainage area in Xinjiang, West China, and examined the impacts of environmental factors on those changes. Patterns of land cover change were analyzed for the time sequence of 1987–1999–2004 based on satellite-derived land classification maps, and their relationships with environmental factors were determined using Redundancy Analysis (RDA). Environmental variables used in the analysis included altitude, slope, aspect, patch shape index (fractal dimension), patch area, distance to water body, distance to settlements, and distance to main roads. We found that during the study period, 26% of the land experienced cover changes, much of which were the types from the natural riparian and upland vegetation to other land covers. The natural riparian and upland vegetation patches were transformed mostly to desert and some to farmlands, indicating expanding desertification processes of the region. A significant fraction of the natural riparian and upland vegetation experienced a phase of alkalinity before becoming desert, suggesting that drought is not the exclusive environmental driver of desertification in the study area. Overall, only a small proportion of the variance in vegetation-related land cover change is explainable by environmental variables included in this study, especially during 1987–1999, indicating that patch-level based vegetation change in this region is partly attributable to environmental perturbations. The apparent transformation from the natural riparian and upland vegetation to desert indicates an on-going process of desertification in the region.

Similar Articles

Investigation of climate change in iran

Author(s): Amiri MJ, Eslamian SS

J Environ Eng Sci 13:117–126

Author(s): Carneiro C, Scheer MB, Possetti GRC ( 2018) Phosphorus behaviour in a river during periods of drought and rain

Effects of drought on plant parameters of different rangeland types in Khansar region, Iran

Author(s): Hadian F, Jafari R, Bashari H, Tarkesh M, Clarke KD

Global water resources: vulnerability from climate change and population growth

Author(s): Vörösmarty CJ, Green P, Salisbury J, Lammers RB

Climate-resilient water supply for a mine in the Chilean Andes

Author(s): Correa-Ibanez R, Keir G, McIntyre N

Land-cover change detection using multi-temporal MODIS NDVI data

Author(s): Lunetta RS, Knight JF, Ediriwickrema J, Lyon JG, Worthy LD

Crop yield forecasting on the Canadian Prairies using MODIS NDVI data

Author(s): Mkhabela MS, Bullock P, Raj S, Wang S, Yang Y

The influence of drought and anthropogenic effects on groundwater levels in Orissa, India

Author(s): Panda DK, Mishra A, Jena SK, James BK, Kumar A

GRACE groundwater drought index: Evaluation of California Central Valley groundwater drought

Author(s): Thomas BF, Famiglietti JS, Landerer FW, Wiese DN, Molotch NP, et al.

Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI

Author(s): Beck PSA, Atzberger C, Høgda KA, Johansen B, Skidmore AK

Spatio-temporal variation of throughfall in a hyrcanian plain forest stand in Northern Iran

Author(s): Yousefi S, Sadeghi SH, Mirzaee S, Ploeg MVD, Keesstra S, et al.

Topographic thresholds for plant colonization on semi‐arid eroded slopes

Author(s): Bochet E, García‐Fayos P, Poesen J

Mapping MODIS LST NDVI imagery for drought monitoring in Punjab Pakistan

Author(s): Khan J, Wang P, Xie Y, Wang L, Li L