Climate change, drought and groundwater availability in southern Italy

Author(s): Polemio M, Casarano D

Abstract

Data for the period 1821 to 2003 from 126 rain gauges, 41 temperature gauges, eight river discharge gauges and 239 wells, located in southern Italy, have been analysed to characterize the effect of recent climate change on availability of water resources, focusing on groundwater resources. Regular data are available from 1921 to 2001. Many analysis methods are used: principal component analysis, to divide the study area into homogenous portions; trend analysis, considering the Mann–Kendall, Student- t and Craddock tests, autocorrelation and cross-correlation analyses, and seasonal, annual and moving-average variables, applying the spatial analysis to each variable with a geographical information system approach. A widespread decreasing trend of annual rainfall is observed over 97% of the whole area. The decreasing trend of rainfall worsens or decreases as mean annual rainfall increases; the spatial mean of trend ranges from −0.8 mm/a in Apulia to −2.9 mm/a in Calabria. The decrease in rainfall is notable after 1980: the recent droughts of 1988–1992 and 1999–2001 appear to be exceptional. On a seasonal basis, the decreasing trend is concentrated in winter; a slight positive trend is observed in summer, the arid season in which the increase is useless as it is transformed into actual evapotranspiration. The temperature trend is not significant and homogeneous everywhere if the temperature increase seems to prevail, especially from about 1980. Net rainfall, calculated as a function of monthly rainfall and temperature, shows a huge and generalized negative trend. The trend of groundwater availability is so negative everywhere that the situation can be termed dramatic for water users, due not only to the natural drop in recharge but also to the increase of discharge by wells to compensate the non-availability of surface water tapped by dams, as a direct effect of droughts.

Similar Articles

Investigation of climate change in iran

Author(s): Amiri MJ, Eslamian SS

J Environ Eng Sci 13:117–126

Author(s): Carneiro C, Scheer MB, Possetti GRC ( 2018) Phosphorus behaviour in a river during periods of drought and rain

Effects of drought on plant parameters of different rangeland types in Khansar region, Iran

Author(s): Hadian F, Jafari R, Bashari H, Tarkesh M, Clarke KD

Global water resources: vulnerability from climate change and population growth

Author(s): Vörösmarty CJ, Green P, Salisbury J, Lammers RB

Climate-resilient water supply for a mine in the Chilean Andes

Author(s): Correa-Ibanez R, Keir G, McIntyre N

Land-cover change detection using multi-temporal MODIS NDVI data

Author(s): Lunetta RS, Knight JF, Ediriwickrema J, Lyon JG, Worthy LD

Crop yield forecasting on the Canadian Prairies using MODIS NDVI data

Author(s): Mkhabela MS, Bullock P, Raj S, Wang S, Yang Y

The influence of drought and anthropogenic effects on groundwater levels in Orissa, India

Author(s): Panda DK, Mishra A, Jena SK, James BK, Kumar A

GRACE groundwater drought index: Evaluation of California Central Valley groundwater drought

Author(s): Thomas BF, Famiglietti JS, Landerer FW, Wiese DN, Molotch NP, et al.

Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI

Author(s): Beck PSA, Atzberger C, Høgda KA, Johansen B, Skidmore AK

Spatio-temporal variation of throughfall in a hyrcanian plain forest stand in Northern Iran

Author(s): Yousefi S, Sadeghi SH, Mirzaee S, Ploeg MVD, Keesstra S, et al.

Topographic thresholds for plant colonization on semi‐arid eroded slopes

Author(s): Bochet E, García‐Fayos P, Poesen J

Mapping MODIS LST NDVI imagery for drought monitoring in Punjab Pakistan

Author(s): Khan J, Wang P, Xie Y, Wang L, Li L