Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data

Author(s): Son NT, Chen CF, Chen CR, Chang LY, Minh VQ

Abstract

Drought is a complex natural phenomenon, and its impacts on agriculture are enormous. Drought has been a prevalent concern for farmers in the Lower Mekong Basin (LMB) over the last decades; thus, monitoring drought is important for water planning and management to mitigate impacts on agriculture in the region. This study explored the applicability of monthly MODIS normalized difference vegetation index (NDVI) and land surface temperature (LST) data for agricultural drought monitoring in LMB in the dry season from November 2001 to April 2010. The data were processed using the temperature vegetation dryness index (TVDI), calculated by parameterizing the relationship between the MODIS NDVI and LST data. The daily volumetric surface soil moisture from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and monthly precipitation from the Tropical Rainfall Measuring Mission (TRMM) were collected and used for verification of the results. In addition, we compared the efficiency of TVDI with a commonly used drought index, the crop water stress index (CWSI), derived from the MODIS LST alone. The results achieved from comparisons between TVDI and AMSR-E soil moisture data indicated acceptable correlations between the two datasets in most cases. There was close agreement between TVDI and TRMM precipitation data through the season, indicating that TVDI was sensitive to precipitation. The TVDI compared to CWSI also yielded close correlations between both datasets. The TVDI was, however, more sensitive to soil moisture stress than CWSI. The results archived by analysis of TVDI indicated that the moderate and severe droughts were spatially scattered over the region from November to March, but more extensive in northeast Thailand and Cambodia. The larger area of severe drought was especially observed for the 2003–2006 dry seasons compared to other years. The results achieved from this study could be important for drought warnings and irrigation scheduling.

Similar Articles

Investigation of climate change in iran

Author(s): Amiri MJ, Eslamian SS

J Environ Eng Sci 13:117–126

Author(s): Carneiro C, Scheer MB, Possetti GRC ( 2018) Phosphorus behaviour in a river during periods of drought and rain

Effects of drought on plant parameters of different rangeland types in Khansar region, Iran

Author(s): Hadian F, Jafari R, Bashari H, Tarkesh M, Clarke KD

Global water resources: vulnerability from climate change and population growth

Author(s): Vörösmarty CJ, Green P, Salisbury J, Lammers RB

Climate-resilient water supply for a mine in the Chilean Andes

Author(s): Correa-Ibanez R, Keir G, McIntyre N

Land-cover change detection using multi-temporal MODIS NDVI data

Author(s): Lunetta RS, Knight JF, Ediriwickrema J, Lyon JG, Worthy LD

Crop yield forecasting on the Canadian Prairies using MODIS NDVI data

Author(s): Mkhabela MS, Bullock P, Raj S, Wang S, Yang Y

The influence of drought and anthropogenic effects on groundwater levels in Orissa, India

Author(s): Panda DK, Mishra A, Jena SK, James BK, Kumar A

GRACE groundwater drought index: Evaluation of California Central Valley groundwater drought

Author(s): Thomas BF, Famiglietti JS, Landerer FW, Wiese DN, Molotch NP, et al.

Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI

Author(s): Beck PSA, Atzberger C, Høgda KA, Johansen B, Skidmore AK

Spatio-temporal variation of throughfall in a hyrcanian plain forest stand in Northern Iran

Author(s): Yousefi S, Sadeghi SH, Mirzaee S, Ploeg MVD, Keesstra S, et al.

Topographic thresholds for plant colonization on semi‐arid eroded slopes

Author(s): Bochet E, García‐Fayos P, Poesen J

Mapping MODIS LST NDVI imagery for drought monitoring in Punjab Pakistan

Author(s): Khan J, Wang P, Xie Y, Wang L, Li L