Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits

Author(s): Kalt W, Forney CF, Martin A, Prior RL


Fresh strawberries (Fragaria x ananassa Duch.), raspberries (Rubus idaeus Michx.), highbush blueberries (Vaccinium corymbosum L.), and lowbush blueberries (Vaccinium angustifolium Aiton) were stored at 0, 10, 20, and 30 degrees C for up to 8 days to determine the effects of storage temperature on whole fruit antioxidant capacity (as measured by the oxygen radical absorbing capacity assay, Cao et al., Clin. Chem. 1995, 41, 1738-1744) and total phenolic, anthocyanin, and ascorbate content. The four fruit varied markedly in their total antioxidant capacity, and antioxidant capacity was strongly correlated with the content of total phenolics (0.83) and anthocyanins (0.90). The antioxidant capacity of the two blueberry species was about 3-fold higher than either strawberries or raspberries. However, there was an increase in the antioxidant capacity of strawberries and raspberries during storage at temperatures >0 degrees C, which was accompanied by increases in anthocyanins in strawberries and increases in anthocyanins and total phenolics in raspberries. Ascorbate content differed more than 5-fold among the four fruit species; on average, strawberries and raspberries had almost 4-times more ascorbate than highbush and lowbush blueberries. There were no ascorbate losses in strawberries or highbush blueberries during 8 days of storage at the various temperatures, but there were losses in the other two fruit species. Ascorbate made only a small contribution (0.4-9.4%) to the total antioxidant capacity of the fruit. The increase observed in antioxidant capacity through postharvest phenolic synthesis and metabolism suggested that commercially feasible technologies may be developed to enhance the health functionality of small fruit crops.

Similar Articles

Canned fruit and vegetable consumption in the United States: An updated report to Congress

Author(s): Buzby JC, Wells HF, Kumcu A, Lin BH, Lucier G, et al.

Fruit and vegetable processing

Author(s): Dauthy ME

Proximate composition, minerals and vitamins in selected canned vegetables

Author(s): Martin-Belloso O, Llanos-Barrioberro E

ß-Carotene and Ascorbic acid retention in fresh and processed vegetables

Author(s): Howard LA, Wong AD, Perry AK, Klein BP

Effects of varieties and cultivation conditions on the composition of strawberries

Author(s): Hakala M, Lapvetelainen A, Huopalahti R, Kallio H, Tahvonen R

Losses of vitamin C from fresh strawberries in a commercial supply chain

Author(s): Russell LF, LeBlanc DI, McRae KB, Ryan DAJ

Characterization of red raspberry (rubusidaeus L

Author(s): Tosun M, Ercisli S, Karlidag H, Sengul M

Effects of preparation procedures, packaging and storage on nutrient retention in peeled potatoes

Author(s): Hagg M, Hakkinen U, Kumpulainen J, Ahvenainen R, Hurme E

The variations of ascorbic acid content in vegetable processing

Author(s): Lee CY, Downing DL, Iredale HD, Chapman JA

Vitamin C and flavonoid levels of fruits and vegetables consumed in Hawaii

Author(s): Franke AA, Custer LJ, Arakaki C, Murphy SP

Microwave cooking of vegetables

Author(s): Kylen AM, Charles VR, McGrath BH, Schleter JM, West LC, et al.

Comparison of ascorbic acid content of super-market versus roadside stand produce

Author(s): Bushway RJ, Helper PR, King J, Perkins B, Krishnan M

Misting effects on ascorbic acid retention in broccoli during cabinet display

Author(s): Barth MM, Perry AK, Schmidt SJ, Klein BP

Antioxidants and other chemical and physical characteristics of two strawberry cultivars at different ripeness stages

Author(s): de O Pineli LL, Moretti CL, dos Santos MS, Campos AB, Brasileiro AV, et al.

Food component profiles for fruit and vegetable subgroups

Author(s): Pennington JAT, Fisher RA