Killing of Aspergillusfumigatus by alveolar macrophages is mediated by reactive oxidant intermediates

Author(s): Philippe B, Ibrahim-Granet O, Prévost MC, Gougerot-Pocidalo MA, Sanchez Perez M, et al.

Abstract

Phagocytosis and mechanisms of killing of Aspergillus fumigatus conidia by murine alveolar macrophages (AM), which are the main phagocytic cells of the innate immunity of the lung, were investigated. Engulfment of conidia by murine AM lasts 2 h. Killing of A. fumigatus conidia by AM begins after 6 h of phagocytosis. Swelling of the conidia inside the AM is a prerequisite for killing of conidia. The contributions of NADPH oxidase and inducible nitric oxide synthase to the conidicidal activity of AM were studied using AM from OF1, wild-type and congenic p47phox(-/-) 129Sv, and wild-type and congenic iNOS(-/-) C57BL/6 mice. AM from p47phox(-/-) mice were unable to kill A. fumigatus conidia. Inhibitors of NADPH oxidase that decreased the production of reactive oxidant intermediates inhibited the killing of A. fumigatus without altering the phagocytosis rate. In contrast to NADPH oxidase, nitric oxide synthase does not play a role in killing of conidia. Corticosteroids did not alter the internalization of conidia by AM but did inhibit the production of reactive oxidant intermediates and the killing of A. fumigatus conidia by AM. Impairment of production of reactive oxidant intermediates by corticosteroids is responsible for the development of invasive aspergillosis in immunosuppressed mice.

Similar Articles

The diagnosis and incidence of allergic fungal sinusitis

Author(s): Ponikau JU, Sherris DA, Kern EB, Homburger HA, Frigas E, et al.

Intranasal antifungal treatment in 51 patients with chronic rhinosinusitis

Author(s): Ponikau JU, Sherris DA, Kita H, Kern EB

Striking deposition of toxic eosinophil major basic protein in mucus: implications for chronic rhinosinusitis

Author(s): Ponikau JU, Sherris DA, Kephart GM, Kern EB, Congdon DJ, et al.

Fungal rhinosinusitis: a categorization and definitional schema addressing current controversies

Author(s): Chakrabarti A, Denning DW, Ferguson BJ, Ponikau J, Buzina W, et al.

'Eosinophilic fungal rhinosinusitis': a common disorder in Europe? Laryngoscope 113: 264-269

Author(s): Braun H, Buzina W, Freudenschuss K, Beham A, Stammberger H

Allergic Aspergillus sinusitis: a newly recognized form of sinusitis

Author(s): Katzenstein AL, Sale SR, Greenberger PA

Chronicrhinosinusitis: an enhanced immune response to ubiquitous airborne fungi

Author(s): Shin SH, Ponikau JU, Sherris DA, Congdon D, Frigas E, et al.

Aspergillosis of the nose and paranasal sinuses

Author(s): Milroy CM, Blanshard JD, Lucas S, Michaels L

Localised invasive sino-orbital aspergillosis: characteristic features

Author(s): Sivak-Callcott JA, Livesley N, Nugent RA, Rasmussen SL, Saeed P, et al.

Aspergillosis of the sphenoid sinus simulating a pituitary tumor

Author(s): Larranaga J, Fandiño J, Gomez-Bueno J, Rodriguez D, Gonzalez-Carrero J, et al.

Allergic aspergillus sinusitis with proptosis

Author(s): Daghistani KJ, Jamal TS, Zaher S, Nassif OI

New species in Aspergillus section Terrei

Author(s): Samson RA, Peterson SW, Frisvad JC, Varga J

A water-damaged home and health of occupants: a case study

Author(s): Thrasher JD, Gray MR, Kilburn KH, Dennis DP, Yu A

Molds and mycotoxins in indoor environments--a survey in water-damaged buildings

Author(s): Bloom E, Nyman E, Must A, Pehrson C, Larsson L

Co-occurrence of toxic bacterial and fungal secondary metabolites in moisture-damaged indoor environments

Author(s): Taubel M, Sulyok M, Vishwanath V, Bloom E, Turunen M, et al.

Trichothecenemycotoxins in the dust of ventilation systems in office buildings

Author(s): Smoragiewicz W, Cossette B, Boutard A, Krzystyniak K

Mycotoxins in crude building materials from water-damaged buildings

Author(s): Tuomi T, Reijula K, Johnsson T, Hemminki K, Hintikka EL, et al.

Expression of markers shared between human haematopoietic cells and neuroblastoma cells

Author(s): Ebener U, Wehner S, Cinatl J, Gussetis ES, Kornhuber B

Leukophysin: a 28-kDa granule membrane protein of leukocytes

Author(s): Abdelhaleem MM, Hatskelzon L, Dalal BI, Gerrard JM, Greenberg AH

Pathogenesis II: fungal responses to host responses: interaction of host cells with fungi

Author(s): Mendes-Giannini MJ, Taylor ML, Bouchara JB, Burger E, Calich VL, et al.

Detection of fungal organisms in eosinophilicmucin using a fluorescein-labeled chitin-specific binding protein

Author(s): Taylor MJ, Ponikau JU, Sherris DA, Kern EB, Gaffey TA, et al.

Mycotoxin detection in human samples from patients exposed to environmental molds

Author(s): Hooper DG, Bolton VE, Guilford FT, Straus DC

A water-damaged home and health of occupants: a case study

Author(s): Thrasher JD, Gray MR, Kilburn KH, Dennis DP, Yu A

Aspergillus bronchitis without significant immunocompromise

Author(s): Chrdle A, Mustakim S, Bright-Thomas RJ, Baxter CG, Felton T, et al.

Aspergillusterreus complex: an emergent opportunistic agent of Onychomycosis

Author(s): Fernandez MS, Rojas FD, Cattana ME, Sosa Mde L, Mangiaterra ML, et al.

Invasive Aspergillusterreus sinusitis with orbitocranial extension: case report

Author(s): Akhaddar A, Gazzaz M, Albouzidi A, Lmimouni B, Elmostarchid B, et al.

Clinical features and outcomes of four patients with invasive fungal sinusitis

Author(s): Takahashi H, Hinohira Y, Hato N, Wakisaka H, Hyodo J, et al.

Detection of mycotoxins in patients with chronic fatigue syndrome

Author(s): Brewer JH, Thrasher JD, Straus DC, Madison RA, Hooper D

Mixed mold mycotoxicosis: immunological changes in humans following exposure in water-damaged buildings

Author(s): Gray MR, Thrasher JD, Crago R, Madison RA, Arnold L, et al.

Fungal rhinosinusitis and imaging modalities

Author(s): Gorovoy IR, Kazanjian M, Kersten RC, Kim HJ, Vagefi MR