Author(s): Elumalai P, Gunadharini DN,Senthilkumar K, Banudevi S,Arunkumar R, et al.
We aimed to investigate the cytotoxic effects of nimbolide, a limonoid present in leaves and flowers of the neem tree (Azadirachta indica) on human breast cancer cells. The molecular mechanisms involved in the apoptotic activity exerted by nimbolide were studied on the estrogen dependent (MCF-7) and estrogen independent (MDA-MB-231) human breast cancer cell lines. The growth inhibitory effect of nimbolide was assessed by MTT assay. Apoptosis induction by nimbolide treatment was determined by JC-1 mitochondrial membrane potential staining, cytochrome c release, caspase activation, cleavage of PARP and AO/EtBr dual staining. The modulation of apoptotic proteins (intrinsic pathway: Bax, bad, Bcl-2, Bcl-xL, Mcl-1, XIAP-1 and caspase-3, 9; extrinsic pathway: TRAIL, FasL, FADDR and Caspase-8) were studied by western blot and real time PCR analysis. Treatment with nimbolide resulted in dose and time-dependent inhibition of growth of MCF-7 and MDA-MB-231 cells. The occurrence of apoptosis in these cells was indicated by JC-1 staining, modulation of both intrinsic and extrinsic apoptotic signaling molecules expression and further apoptosis was confirmed by AO/EtBr dual staining. These events were associated with: increased levels of proapoptotic proteins Bax, Bad, Fas-L, TRAIL, FADDR, cytochrome c and reduced levels of the anti-apoptotic proteins Bcl-2, Bcl-xL, Mcl-1 and XIAP-1. Nimbolide induces the cleavage of pro-caspase-8, pro-caspase-3 and PARP. The above data suggest that nimbolide induces apoptosis by both the intrinsic and extrinsic pathways. With evidence of above data it is suggested that nimbolide exhibit anticancer effect through its apoptosis-inducing property. Thus, nimbolide raises new hope for its use in anticancer therapy.
Referred From: https://www.ncbi.nlm.nih.gov/pubmed/23089555
Author(s): Takiar R, Nadayil D, Nandakumar A
Author(s): GM Cragg, DJ Newman
Author(s): Kumar S, Suresh PK, Vijayababu MR, Arunkumar A, Arunakaran J
Author(s): R Baral, Chattopadhyay U ( 2004) Neem (Azadirachtaindica) leaf mediated immune activation causes prophylactic growth inhibition of murine Ehrlich carcinoma and B16 melanoma
Author(s): Udeinya IJ,Shu EN, Quakyi I,Ajayi FO
Author(s): Othman F, Motalleb G,Peng SLT,Rahmat A, Fakurazi S, et al.
Author(s): Srivastava P, Yadav N, Lella R,Schneider A, Jones A, et al.
Author(s): Kavitha K, Priyadarsini RV, Anitha P, Ramalingam K,Sakthivel R, et al.
Author(s): Sharma C, Andrea J, Goala P, Taher MG,Tahir AR, et al.
Author(s): Dale PS, Tamhankar CP, George D, Daftary GV ( 2001) Co-medication with hydrolytic enzymes in radiation therapy of uterine cervix: evidence of the reduction of acute side effects
Author(s): Popiela T, Kulig J, Hanisch J, Bock PR
Author(s): Tong-PengXu, HuaShen, Ling-Xiang Liu, Yong-QianShu
Author(s): Hsu YL, Cho CY, Kuo PL
Author(s): Kawiak A, Zawacka-Pankau J, Lojkowska E
Author(s): Liu X, Cai W, Niu M, Chong Y, Liu H, et al.
Author(s): Santosh KS, Haruyo I, Gautam S, Ahn-Kwang-Seok, Bharat BA
Author(s): Chen CA, Chang HH, Kao CY, Tsai TH, Chen YJ
Author(s): Prashar R, Kumar A, Banerjee S,Rao AR
Author(s): Prashar R, Kumar A, Hewer A, Cole KJ, Davis W
Author(s): Aruna K,Sivaramakrishnan VM
Author(s): Aruna K, Sivaramakrishnan VM
Author(s): Ganasoundari A, Uma Devi P,Rao BS
Author(s): Leyon PV, Kuttan G
Author(s): Singh N, Singh SM, Shrivastava P
Author(s): Singh SM, Singh N, Shrivastava P
Author(s): Kuo CL, Chou CC, Yung BY
Author(s): Ali H, Dixit S
Author(s): Pahadiya S, Sharma J
Author(s): Ueda JY, Tezuka Y, Banskota AH, Le Tran Q, Tran QK, et al.
Author(s): Wang S, Zheng Z, Weng Y, Yu Y, Zhang D, et al.
Author(s): Renault JH, Nuzillard JM, Le Crouérour G, Thépenier P, Zèches-Hanrot M, et al.