Zooplankton distribution and dynamics in a North Pacific eddy of coastal origin: I Transport and loss of continental margin species J Oceanogr 58: 725–738

Author(s): Mackas DL and Galbraith MD

Abstract

Zooplankton from coastal/continental margin environments can be transported long distances seaward into the subarctic North Pacific by the large (100–200 km diameter) anticyclonic eddies that form annually in late winter along the eastern margin of the Alaska Gyre. One recurrent region for eddy formation is off the southern tip of the Queen Charlotte Islands (near 52°N 132°W). Eddies from this source region (termed ‘Haida eddies’) propagate westward into open ocean waters during the subsequent 1–3 years, often to about 140°W, occasionally to mid gyre. Each eddy contains a core of anomalously low density water, and produces an upward doming of the sea surface detectable by satellite altimetry, thereby aiding repeated ship-based sampling. The zooplankton community in the eddies is a mixture between shelf/slope species (transported from the nearshore formation region) and subarctic oceanic species (which colonize the eddy from the sides and below). This paper reports sequential observations (late winter, early summer and fall seasons of 2000, and early summer and fall of 2001) of the abundance and distribution of continental-margin zooplankton in the Haida eddies that formed in late winters of 2000 and 2001. Shelf-origin species declined in abundance over time. Species that appeared to have a continental slope origin sometimes declined but sometimes persisted and flourished. Transport and retention within the eddy appeared to be especially effective for species that undergo diel vertical migration.

Similar Articles

Wind-driven coastal upwelling along the western boundary of the Bay of Bengal during the southwest monsoon

Author(s): Shetye SR, Shenoi SSC, Gouveia AD, Michael GS, Sundar D, et al.

The Western Boundary Current of the seasonal subtropical gyre in Bay of Bengal

Author(s): Shetye SR, AD Gouveia, SSC Shenoi, DSundar, GSMichael, et al.

Hydrography and circulation in the western Bay of Bengal during the northeast monsoon

Author(s): Shetye SR, Gouveia AD, Shankar D, Shenoi SSC, Vinayachandran PN, et al.

Observation of the western boundary current of the Bay of Bengal Deep-Sea Res 44:135-145

Author(s): Sanilkumar KV, Kuruvilla TV, Jogendranath D, and Rao RR

Eddy-mediated biological productivity in the Bay of Bengal during fall and spring intermonsoons Deep Sea Research II 54: 1619-1640

Author(s): Prasanna Kumar S, Nuncio M, Ramaiah N, Sardesai S, Narvekar, Jayu, Fernandes, Veronica, & Paul, Jane T

Are eddies nature’s trigger to enhance biological productivity in the Bay of Bengal? Geophys Res Lett 31

Author(s): Prasanna Kumar S, Nuncio M, Narvekar J, Kumar A, Sardesai S, et al.

Seasonal cycle of physicalforcing and biological response in the Bay of BengalIndian J Mar Sci 39: 388-405

Author(s): Prasanna Kumar S, Nuncio M, Narvekar J, Ramaiah N, Sardessai S, et al

Influence of basin-scale and mesoscale physical processes onbiological productivity in the Bay of Bengal during the summer monsoon

Author(s): Muraleedharan KR, Jasmine P, Achuthankutty CT, Revichandran C, Dineshkumar PK, et al

ICES zooplankton methodology manual

Author(s): Harris RP, Wiebe PH, Lenz JH, Skjoldal R & Huntley M

Detection of Bay of Bengaleddies from Topex and in situ observations

Author(s): Gopalan AKS, GopalaKrishna VV, Ali MM, Sharma R

Forcing mechanisms of the Bay of Bengal circulation Current SciIndia 71: 753-763

Author(s): Vinayachandran PN, Shetye SR, Sengupta D, Gadgil S

Development of a subsurface chlorophyll maximum at the entrance to the Gulf of Finland, Baltic Sea

Author(s): Kononen KJ, S Hallfors, M Kokkonen, H Kuosa, J Laanemets, J Pavelson

Analysis of Marine Ecosystems

Author(s): Owen RW

Vertical flux of respiratory carbon by oceanic diel migrant biota Deep-Sea Res 37: 685–694

Author(s): Longhurst AR, Bedo A, Harrison WG, Head EJH, Sameoto DD

Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso

Author(s): Steinberg DK, Carlson CA, Bates NR, Goldthwait SA, Madin LP, et al.