The distribution, biomass and primary production of the seagrass Halophila ovalis in the Swan Canning estuary, Western Australia

Author(s): Hillman K, Mc Comb, AJ, Walker DI

Abstract

The seagrass Halophila ovalis (R.Br.) Hook f. is the dominant benthic plant of the Swan/Canning Estuary, southwestern Australia. This paper describes the biomass, distribution and primary production of this plant in relation to environmental factors.

Halophila ovalis occupied 550–600 ha in the lower reaches of the estuary, approximately 20% of the area of the main estuarine basin. Over 99% of the seagrass was in water less than 2 m deep (relative to “datum”, an extreme low water reference mark set in 1892). Distribution in the main estuarine basin differed little between 1976 and 1982, although the species was more ephemeral in the Canning Estuary.

Uniform stands of Halophila ovalis reached a biomass of up to 120 g dry weight (DW) m−2 in late summer/early autumn, and maximum productivities of up to 40 g DW m−2 day−1 in summer. At peak biomass, the area of Halophila ovalis in the estuary represented approximately 350 t DW of plant material, 4200 kg of nitrogen and 630 kg of phosphorus. Average productivity was 500 g C m−2 year−1, although uniform stands in shallow waters attained up to 1200 g C m−2 year−1.

The biomass, productivity and biometry of Halophila ovalis were strongly influenced by salinity, temperature and light supply. The main growing period was summer, when marine salinities prevailed, and light supply and temperature were highest. Salinity, temperature and light were lowest during winter. Field and laboratory studies indicated that during years of average river discharge (1980, 1982), Halophila ovalis was little affected by the salinity range experienced (15–35‰). However, during 1981, a year of high discharge, conditions of low salinity and poor light supply caused severe declines in biomass, particularly in the Canning Estuary. Light was considered the more important factor controlling growth, since the waters of the estuary are generally turbid, and subject to sudden increases in turbidity. The effects of salinity, temperature and light were investigated by growing sprigs in artificial seawater culture and measuring growth increments. Each factor was investigated separately; salinity values ranged from 5 to 45‰, temperature from 10 to 25°C and light from 0 to 400 μE m−2 s−1. Halophila ovalis grew actively at salinities from approximately 10 to 40‰. Saturating irradiance was approximately 200 μE m−2 s−1 (10% of surface PAR) and compensation point was approximately 40 μE m−2 s−1 (2% of full sunlight PAR). Temperatures lower than 15°C severely limited productivity, and at 10°C no growth occurred, although plants did not die. Productivity increased from 15 to 20°C by a factor of seven, and a further 30% from 20 to 25°C. The highest observed growth rate, approximately 2.1 mg DW per apex day−1, was reached at 25°C.

These results were incorporated into a model to determine how much of the variance in productivity could be accounted for by these three factors, assuming independent action. The model was relatively successful at predicting seasonal growth responses, but underestimated spring productivity, probably because the unpredictable light climate in spring in the Swan River was not fully simulated.

Similar Articles

Basic Ecology

Author(s): Odum EP

The estuarine ecosystem

Author(s): Mc Lusky DS

Differences in benthic fauna and sediment among mangrove (Avicennia marina var

Author(s): Morrisey DJ, Skilleter GA, Ellis JI, Burns BR, Kemp CE, et al.

The seagrasses of the world

Author(s): Den Hartog C

World Atlas of Seagrasses

Author(s): Green EP, Short FT

Accelerating loss of seagrasses across the globe threatens coastal ecosystems

Author(s): Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, et al.

Seagrasses: biology, ecology and conservation

Author(s): Larkum AWD, Orth RJ, Duarte CM

Seagrass Ecology

Author(s): Hemminga MA, Duarte CM

Seagrass community ecology: Marine Community Ecology

Author(s): Williams SL, Heck Jr K.L.

The future of seagrass meadows

Author(s): Duarte C.M

Latitudinal gradients as natural laboratories to infer species’ responses to temperature

Author(s): De Frenne P, Graae BJ, Rodríguez-Sanchez F, Kolb A, Chabrerie O, et al.

(2016b) Cockle infection by Himasthla quissetensis - II

Author(s): de Montaudouin X, Blanchet H, Bazairi H, Nazik A, Desclaux-Marchand C, et al

Consequences of climate-driven biodiversity changes for ecosystem functioning of North European rocky shores

Author(s): Hawkins SJ, Sugden HE, Mieszkowska N, Moore PJ, Poloczanska E, et al.

Changes in North Sea macrofauna communities and species distribution between 1986 and 2000

Author(s): Kröncke I, Reiss H, Eggleton JD, Aldridge J, et al.

Sea level variability and tidal resonance in the Gulf of Gabès, Tunisia

Author(s): Sammari C, Koutitonsky VG, Moussa M

Long-term evolution (1988-2008) of Zostera spp

Author(s): Plus M, Sebastien D, Gilles T, Isabelle A, de Montaudouin X, et al.

The Mathematical theory of communication

Author(s): Shannon CE, Weaver W

Diet of Worms Emended: An Update of Polychaete Feeding Guilds

Author(s): Jumars PA, Dorgan KM, Lindsay SM

Polychaete/amphipod ratio revisited

Author(s): Dauvin JC, Ruellet T

PRIMER v6: User Manual/Tutorial

Author(s): Clarke KR, Gorley RN

Infauna from Zostera marina L

Author(s): Fredriksen S, De Backer A, Böstrom C, Christie H

Seagrass colonization: knock-on effects on zoobenthic community, populations and individual health

Author(s): Do VT, de Montaudouin X, Lavesque N, Blanchet H, Guyard H

A Three-Stage Symbiosis Forms the Foundation of Seagrass Ecosystems

Author(s): van der Heide T, Govers LL, de Fouw J, Olff H, van der Geest M, et al.

The biodiversity of the Mediterranean Sea: estimates, patterns, and threats

Author(s): Coll M, Piroddi C, Steenbeek J, Kaschner K, Ben Rais Lasram F, et al.

Differential responses of bacteria, meiofauna and macrofauna in a shelf area (Ligurian Sea, NW Mediterranean): role of food availability

Author(s): Albertelli G, Covazzi-Harriague A, Danovaro R, Fabiano M, Fraschetti S, et al.

Complex interactions in a rapidly changing world: responses of rocky shore communities to recent climate change

Author(s): Hawkins SJ, Moore PJ, Burrows MT, Poloczanska E, Mieszkowska N, et al.

The impacts of climate change in coastal marine systems

Author(s): Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, et al.