Microbial food webs and the export of biogenic carbon in the oceans Aquat Microb Ecol 9: 69-77

Author(s): Legendre L and Le Fèvre J

Abstract

Microbial food webs, which comprise phototrophic picoplankton (or ultraplankton), heterotrophic bacteria and protozoa, are ubiquitous in marine waters. Members of the microbial food web may play various roles in the export of biogenic carbon. For example, it has been postulated that high bacterial activity may sometimes prevent a significant fraction of the production by large phytoplankton from reaching metazoan consumers. Phototrophit or heterotrophic small plankton cells may be readily exported (i.e. biological CO2 pump) if incorporated into large particles, through either endosymbiosis with larger cells, or development on material accumulated in hydrodynamic traps, or inclusion into marine snow, or grazing by large planktonic microphages (e.g. salps) and incorporation in their sometimes fast-sinking faecal pellets. Another aspect is the export of carbonate by members of the microbial food web (e.g. coccolithophores, foraminifera), which influences the carbon dioxide balance of the ocean (i.e. carbonate pump). Finally, carbon bound into refractory dissolved organic matter is chemically sequestered in the upper ocean, before being exported to depth. The activity of microbial food webs may therefore influence in several ways the export (and sequestration) of biogenic carbon in oceans. KEY

Similar Articles

Wind-driven coastal upwelling along the western boundary of the Bay of Bengal during the southwest monsoon

Author(s): Shetye SR, Shenoi SSC, Gouveia AD, Michael GS, Sundar D, et al.

The Western Boundary Current of the seasonal subtropical gyre in Bay of Bengal

Author(s): Shetye SR, AD Gouveia, SSC Shenoi, DSundar, GSMichael, et al.

Hydrography and circulation in the western Bay of Bengal during the northeast monsoon

Author(s): Shetye SR, Gouveia AD, Shankar D, Shenoi SSC, Vinayachandran PN, et al.

Observation of the western boundary current of the Bay of Bengal Deep-Sea Res 44:135-145

Author(s): Sanilkumar KV, Kuruvilla TV, Jogendranath D, and Rao RR

Eddy-mediated biological productivity in the Bay of Bengal during fall and spring intermonsoons Deep Sea Research II 54: 1619-1640

Author(s): Prasanna Kumar S, Nuncio M, Ramaiah N, Sardesai S, Narvekar, Jayu, Fernandes, Veronica, & Paul, Jane T

Are eddies nature’s trigger to enhance biological productivity in the Bay of Bengal? Geophys Res Lett 31

Author(s): Prasanna Kumar S, Nuncio M, Narvekar J, Kumar A, Sardesai S, et al.

Seasonal cycle of physicalforcing and biological response in the Bay of BengalIndian J Mar Sci 39: 388-405

Author(s): Prasanna Kumar S, Nuncio M, Narvekar J, Ramaiah N, Sardessai S, et al

Influence of basin-scale and mesoscale physical processes onbiological productivity in the Bay of Bengal during the summer monsoon

Author(s): Muraleedharan KR, Jasmine P, Achuthankutty CT, Revichandran C, Dineshkumar PK, et al

ICES zooplankton methodology manual

Author(s): Harris RP, Wiebe PH, Lenz JH, Skjoldal R & Huntley M

Detection of Bay of Bengaleddies from Topex and in situ observations

Author(s): Gopalan AKS, GopalaKrishna VV, Ali MM, Sharma R

Forcing mechanisms of the Bay of Bengal circulation Current SciIndia 71: 753-763

Author(s): Vinayachandran PN, Shetye SR, Sengupta D, Gadgil S

Development of a subsurface chlorophyll maximum at the entrance to the Gulf of Finland, Baltic Sea

Author(s): Kononen KJ, S Hallfors, M Kokkonen, H Kuosa, J Laanemets, J Pavelson

Analysis of Marine Ecosystems

Author(s): Owen RW

Vertical flux of respiratory carbon by oceanic diel migrant biota Deep-Sea Res 37: 685–694

Author(s): Longhurst AR, Bedo A, Harrison WG, Head EJH, Sameoto DD

Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso

Author(s): Steinberg DK, Carlson CA, Bates NR, Goldthwait SA, Madin LP, et al.