Latitudinal gradients as natural laboratories to infer species’ responses to temperature

Author(s): De Frenne P, Graae BJ, Rodríguez-Sanchez F, Kolb A, Chabrerie O, et al.

Abstract

Macroclimatic variation along latitudinal gradients provides an excellent natural laboratory to investigate the role of temperature and the potential impacts of climate warming on terrestrial organisms. Here, we review the use of latitudinal gradients for ecological climate change research, in comparison with altitudinal gradients and experimental warming, and illustrate their use and caveats with a meta-analysis of latitudinal intraspecific variation in important life-history traits of vascular plants. We first provide an overview of latitudinal patterns in temperature and other abiotic and biotic environmental variables in terrestrial ecosystems. We then assess the latitudinal intraspecific variation present in five key life-history traits [plant height, specific leaf area (SLA), foliar nitrogen:phosphorus (N:P) stoichiometry, seed mass and root:shoot (R:S) ratio] in natural populations or common garden experiments across a total of 98 plant species. Intraspecific leaf N:P ratio and seed mass significantly decreased with latitude in natural populations. Conversely, the plant height decreased and SLA increased significantly with latitude of population origin in common garden experiments. However, less than a third of the investigated latitudinal transect studies also formally disentangled the effects of temperature from other environmental drivers which potentially hampers the translation from latitudinal effects into a temperature signal. Synthesis. Latitudinal gradients provide a methodological set-up to overcome the drawbacks of other observational and experimental warming methods. Our synthesis indicates that many life-history traits of plants vary with latitude but the translation of latitudinal clines into responses to temperature is a crucial step. Therefore, especially adaptive differentiation of populations and confounding environmental factors other than temperature need to be considered. More generally, integrated approaches of observational studies along temperature gradients, experimental methods and common garden experiments increasingly emerge as the way forward to further our understanding of species and community responses to climate warming.

Similar Articles

Basic Ecology

Author(s): Odum EP

The estuarine ecosystem

Author(s): Mc Lusky DS

Differences in benthic fauna and sediment among mangrove (Avicennia marina var

Author(s): Morrisey DJ, Skilleter GA, Ellis JI, Burns BR, Kemp CE, et al.

The seagrasses of the world

Author(s): Den Hartog C

World Atlas of Seagrasses

Author(s): Green EP, Short FT

Accelerating loss of seagrasses across the globe threatens coastal ecosystems

Author(s): Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, et al.

Seagrasses: biology, ecology and conservation

Author(s): Larkum AWD, Orth RJ, Duarte CM

Seagrass Ecology

Author(s): Hemminga MA, Duarte CM

Seagrass community ecology: Marine Community Ecology

Author(s): Williams SL, Heck Jr K.L.

The future of seagrass meadows

Author(s): Duarte C.M

(2016b) Cockle infection by Himasthla quissetensis - II

Author(s): de Montaudouin X, Blanchet H, Bazairi H, Nazik A, Desclaux-Marchand C, et al

Consequences of climate-driven biodiversity changes for ecosystem functioning of North European rocky shores

Author(s): Hawkins SJ, Sugden HE, Mieszkowska N, Moore PJ, Poloczanska E, et al.

Changes in North Sea macrofauna communities and species distribution between 1986 and 2000

Author(s): Kröncke I, Reiss H, Eggleton JD, Aldridge J, et al.

Sea level variability and tidal resonance in the Gulf of Gabès, Tunisia

Author(s): Sammari C, Koutitonsky VG, Moussa M

Long-term evolution (1988-2008) of Zostera spp

Author(s): Plus M, Sebastien D, Gilles T, Isabelle A, de Montaudouin X, et al.

The Mathematical theory of communication

Author(s): Shannon CE, Weaver W

Diet of Worms Emended: An Update of Polychaete Feeding Guilds

Author(s): Jumars PA, Dorgan KM, Lindsay SM

Polychaete/amphipod ratio revisited

Author(s): Dauvin JC, Ruellet T

PRIMER v6: User Manual/Tutorial

Author(s): Clarke KR, Gorley RN

Infauna from Zostera marina L

Author(s): Fredriksen S, De Backer A, Böstrom C, Christie H

Seagrass colonization: knock-on effects on zoobenthic community, populations and individual health

Author(s): Do VT, de Montaudouin X, Lavesque N, Blanchet H, Guyard H

A Three-Stage Symbiosis Forms the Foundation of Seagrass Ecosystems

Author(s): van der Heide T, Govers LL, de Fouw J, Olff H, van der Geest M, et al.

The biodiversity of the Mediterranean Sea: estimates, patterns, and threats

Author(s): Coll M, Piroddi C, Steenbeek J, Kaschner K, Ben Rais Lasram F, et al.

Differential responses of bacteria, meiofauna and macrofauna in a shelf area (Ligurian Sea, NW Mediterranean): role of food availability

Author(s): Albertelli G, Covazzi-Harriague A, Danovaro R, Fabiano M, Fraschetti S, et al.

Complex interactions in a rapidly changing world: responses of rocky shore communities to recent climate change

Author(s): Hawkins SJ, Moore PJ, Burrows MT, Poloczanska E, Mieszkowska N, et al.

The impacts of climate change in coastal marine systems

Author(s): Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, et al.