Forcing mechanisms of the Bay of Bengal circulation Current SciIndia 71: 753-763

Author(s): Vinayachandran PN, Shetye SR, Sengupta D, Gadgil S

Abstract

A state-of-the-art ocean general circulation model, set up for the North Indian Ocean and driven by climatological wind stress simulates most of the observed features of the near-surface circulation of the Bay of Bengal. The prominent features of the annual cycle are an anticyclonic gyre with a poleward East India Coastal Current (EICC) during February-May, and an equatorward EICC during October-December. During the summer monsoon, the coastal current flows poleward in the south and equatorward in the north. To identify the principal mechanisms governing this cycle, we carried out experiments with modified winds. When spatially uniform wind stress was applied only over the Bay, the circulation is similar to, but weaker than the observed, and can be linked to two coastal Kelvin wave pulses which originate along the eastern boundary of the Bay during the summer and winter monsoons. When the Bay is forced with observed winds, the wind stress curl strengthens the poleward EICC during February-May and the equatorward EICC during October-December. The principal contribution of equatorial winds is to generate the equatorward coastal current during the summer monsoon off the east coast of India.

Similar Articles

Wind-driven coastal upwelling along the western boundary of the Bay of Bengal during the southwest monsoon

Author(s): Shetye SR, Shenoi SSC, Gouveia AD, Michael GS, Sundar D, et al.

The Western Boundary Current of the seasonal subtropical gyre in Bay of Bengal

Author(s): Shetye SR, AD Gouveia, SSC Shenoi, DSundar, GSMichael, et al.

Hydrography and circulation in the western Bay of Bengal during the northeast monsoon

Author(s): Shetye SR, Gouveia AD, Shankar D, Shenoi SSC, Vinayachandran PN, et al.

Observation of the western boundary current of the Bay of Bengal Deep-Sea Res 44:135-145

Author(s): Sanilkumar KV, Kuruvilla TV, Jogendranath D, and Rao RR

Eddy-mediated biological productivity in the Bay of Bengal during fall and spring intermonsoons Deep Sea Research II 54: 1619-1640

Author(s): Prasanna Kumar S, Nuncio M, Ramaiah N, Sardesai S, Narvekar, Jayu, Fernandes, Veronica, & Paul, Jane T

Are eddies nature’s trigger to enhance biological productivity in the Bay of Bengal? Geophys Res Lett 31

Author(s): Prasanna Kumar S, Nuncio M, Narvekar J, Kumar A, Sardesai S, et al.

Seasonal cycle of physicalforcing and biological response in the Bay of BengalIndian J Mar Sci 39: 388-405

Author(s): Prasanna Kumar S, Nuncio M, Narvekar J, Ramaiah N, Sardessai S, et al

Influence of basin-scale and mesoscale physical processes onbiological productivity in the Bay of Bengal during the summer monsoon

Author(s): Muraleedharan KR, Jasmine P, Achuthankutty CT, Revichandran C, Dineshkumar PK, et al

ICES zooplankton methodology manual

Author(s): Harris RP, Wiebe PH, Lenz JH, Skjoldal R & Huntley M

Detection of Bay of Bengaleddies from Topex and in situ observations

Author(s): Gopalan AKS, GopalaKrishna VV, Ali MM, Sharma R

Development of a subsurface chlorophyll maximum at the entrance to the Gulf of Finland, Baltic Sea

Author(s): Kononen KJ, S Hallfors, M Kokkonen, H Kuosa, J Laanemets, J Pavelson

Analysis of Marine Ecosystems

Author(s): Owen RW

Vertical flux of respiratory carbon by oceanic diel migrant biota Deep-Sea Res 37: 685–694

Author(s): Longhurst AR, Bedo A, Harrison WG, Head EJH, Sameoto DD

Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso

Author(s): Steinberg DK, Carlson CA, Bates NR, Goldthwait SA, Madin LP, et al.