The gut microbiota, obesity and insulin resistance

Author(s): Shen J, Obin MS, Zhao L

Abstract

The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate fundamental discoveries in energy metabolism, molecular endocrinology and immunobiology and may lead to new strategies for prevention of obesity and its complications.

Similar Articles

Management of nonalcoholic fatty liver disease: an evidence-based clinical practice review

Author(s): Arab JP, Candia R, Zapata R, Muñoz C, Arancibia JP, et al.

Gut microbiota and non-alcoholic fatty liver disease: new insights

Author(s): Aron-Wisnewsky J, Gaborit B, Dutour A, Clement K

Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease

Author(s): Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, et al.

Increased oxidative stress in obesity and its impact on metabolic syndrome

Author(s): Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, et al.

Role of gut microbiota: obesity and NAFLD

Author(s): Gangarapu V, Yıldız K, Ince AT, Baysal B

Hepatic histology in obese patients undergoing bariatric surgery

Author(s): Machado M, Marques-Vidal P, Cortez-Pinto H

Gut microbiota and liver disease

Author(s): Goel A, Gupta M, Aggarwal R

An obesity-associated gut microbiome with increased capacity for energy harvest

Author(s): Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, et al.

Obesity alters gut microbial ecology

Author(s): Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, et al.

Microbial ecology: human gut microbes associated with obesity

Author(s): Ley RE, Turnbaugh PJ, Klein S, Gordon JI

Microbiota and SCFA in lean and overweight healthy subjects

Author(s): Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, et al.

Human colonic microbiota associated with diet, obesity and weight loss

Author(s): Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, et al.

Enterotypes of the human gut microbiome

Author(s): Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, et al.

The gut microbiota as an environmental factor that regulates fat storage

Author(s): Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, et al.

Mechanisms underlying the resistance to diet-induced obesity in germ-free mice

Author(s): Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI

Human gut microbiota in obesity and after gastric bypass

Author(s): Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, et al.

Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice

Author(s): Caricilli AM, Picardi PK, de Abreu LL, Ueno M, Prada PO, et al.

The role of gut microbiota on insulin resistance

Author(s): Caricilli AM, Saad MJ

Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance

Author(s): Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, et al.

NOD2 activation induces muscle cell-autonomous innate immune responses and insulin resistance

Author(s): Tamrakar AK, Schertzer JD, Chiu TT, Foley KP, Bilan PJ, et al.

Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis

Author(s): Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, et al.

Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice

Author(s): Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, et al.

Toll-like receptor-2 deficiency enhances non-alcoholic steatohepatitis

Author(s): Rivera CA, Gaskin L, Allman M, Pang J, Brady K, et al.

Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5

Author(s): Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, et al.

NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis

Author(s): Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, et al.

A functional role for Nlrp6 in intestinal inflammation and tumorigenesis

Author(s): Chen GY, Liu M, Wang F, Bertin J, Núñez G

Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity

Author(s): Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, et al.

NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion

Author(s): Wlodarska M, Thaiss CA2, Nowarski R3, Henao-Mejia J3, Zhang JP4, et al.

NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens

Author(s): Anand PK, Malireddi RK, Lukens JR, Vogel P, Bertin J, et al.

Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin

Author(s): Bergheim I, Weber S, Vos M, Krämer S, Volynets V, et al.

Dietary modulation of the human colonic microbiota: updating the concept of prebiotics

Author(s): Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB

Review article: prebiotics in the gastrointestinal tract

Author(s): Macfarlane S, Macfarlane GT, Cummings JH

Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis

Author(s): Ma YY, Li L, Yu CH, Shen Z, Chen LH, et al.