Author(s): Rama RN, Garg PK, Ghosh SK
In the context of a growing interest in remote sensing for precision agriculture applications, the utility of space-borne hyperspectral imaging for the development of a crop-specific spectral library and automatic identification and classification of three cultivars for each of rice (Oryza sativa L.), chilli (Capsicum annuum L.), sugarcane (Saccharum officinarum L.) and cotton (Gossipium hirsutum L.) crops have been investigated in this study. The classification of crops at cultivar level using two spectral libraries developed using hyperspectral reflectance data at canopy scale (in-situ hyperspectral measurements) and at pixel scale (Hyperion data) has shown promising results with 86.5 and 88.8% overall classification accuracy, respectively. This observation highlights the possible integration of in-situ hyperspectral measurements with space-borne hyperspectral remote sensing data for automatic identification and discrimination of various crop cultivars. However, considerable spectral similarity is observed between cultivars of rice and sugarcane crops which may pose problems in the accurate identification of various crop cultivars.